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Abstract. Suppose G is a connected noncompact locally compact group, A,B
are nonempty and compact subsets of G, µ is a left Haar measure on G. Assuming
that G is unimodular, and µ(A2) < Kµ(A) with K > 1 a fixed constant, our first
result shows that there is a continuous surjective group homomorphism χ : G→ L
with compact kernel, where L is a Lie group with

dim(L) ≤ blogKc(blogKc+ 1)/2.

We also demonstrate that this dimension bound is sharp, establish the relationship
between A and its image under the quotient map, and obtain a more general version
of this result for the product set AB without assuming unimodularity.

Our second result classifies G,A,B where A,B have nearly minimal expansions
(when G is unimodular, this just means µ(AB) is close to µ(A) + µ(B)). This
completes the remaining noncompact cases of the Kemperman inverse problem
and answers a question suggested by Griesmer and Tao.

The proofs of both results involve a new analysis of locally compact group G
with bounded n − h, where n − h is an invariant of G appearing in the recently
developed nonabelian Brunn–Minkowski inequality. We also generalize Ruzsa’s
distance and related results to possibly nonunimodular locally compact groups.

1. Introduction

A central problem in additive combinatorics is to obtain descriptions of a subset
A of an abelian group G such that A + A := {a1 + a2 : a1, a2 ∈ A} has small
expansion (i.e., |A+A| < K|A| for a fixed constant K). Freiman-type results tell us
that such A must be commensurable to a coset progression; the theorem for abelian
groups was proven by Green and Ruzsa [7], and the quantitative bound was later
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improved by Sanders [22]. When K = 2, a stronger conclusion in the same line is
given by Kemperman’s structure theorem [16], which classifies finite subsets A,B
of an abelian group G such that |A + B| < |A| + |B|. Another famous result in
this direction is Freiman’s (3k − 4) theorem, which tells us that if A ⊆ Z satisfies
|A+A| ≤ 3|A| − 4, then A must be contained in an arithmetic progression of length
2|A| − 1. The theory have been extended to various settings, which brings together
ideas from different areas of mathematics. In this paper, we obtain the counterpart
of the above results for connected noncompact locally compact groups.

For the rest of the introduction, let G be a connected locally compact group, µG
a left Haar measure on G, and A,B ⊆ G are nonempty and compact. As usual, we
let AB = {ab : a ∈ A, b ∈ B} be the productset of A and B. We also write A2 when
A = B. Even though we have a more general result that applies arbitrary G, we will
assume for simplicity in the next result that G is unimodular (i.e., µG is also a right
Haar measure on G, which holds, for example, when G is a semisimple Lie group).
Our first main theorem tells us that small expansion in an arbitrary locally compact
group arise from small expansion in a Lie group of small dimension:

Theorem 1.1 (Small measure expansions in unimodular noncompact groups). Let
G be a connected unimodular noncompact locally compact group, µG is a left Haar
measure. Suppose A is a compact subset of G of positive measure, and

(1) µG(A2) < KµG(A).

Then there is a continuous surjective group homomorphism χ : G→ L with compact
kernel, where L is a connected Lie group with

dim(L) ≤ blogKc(blogKc+ 1)/2.

Moreover, with A′ = χ(A), we have µL((A′)2) ≤ 64K6µL(A′).

The dimension bound in the above theorem is sharp. For example, let G be the
identity component SO+(r, 1) of the pseudo-orthogonal group SO(r, 1). In this case,
dim(G) = r(r+1)/2. The group G has SO(r) as a maximal compact subgroup, which
has dimension r(r − 1)/2. For every ε > 0, by taking a small open neighborhood
A of SO(r) in SO+(r, 1), the computation by the last three authors in [15] gives us
µG(A2) < 2r+εµG(A).

Theorem 1.1 has the following immediate corollary, which can be applied to works
by Hrushovski and Rodriguez Fanlo [11], Rodriguez Fanlo [20], and Machado [19] on
variants of small expansion problems.

Corollary 1.2. Let G be a connected unimodular noncompact Lie group with no
nontrivial compact normal subgroups. Suppose there is a compact subset A ⊆ G of
positive measure, and µG(A2) < KµG(A). Then dim(G) ≤ blogKc(blogKc+ 1)/2.
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An ineffective version of Theorem 1.1, with no quantitative bound on the dimension
of L can be deduced from Carolino’s classification of measure approximate groups
of locally compact groups [3]. When G is a nilpotent Lie group with no compact
normal subgroups, the bound in Corollary 1.2 can be strengthened to blogKc. This
is a result by Gelander and Hrushovski [10] and they used it to characterize finite
approximate groups; see also [23].

A key ingredient of the proof of Theorem 1.1 is the recently developed nonabelian
Brunn–Minkowski inequality [15] by the last three authors. This produces a struc-
tural constraint n − h < logK + 1 on the group G, where n − h is an invariant of
G roughly measuring its “noncompact dimension”. A main new component of this
paper is a structural study of G with n − h < logK + 1, which yields the desired
χ and L. Even though the Brunn–Minkowski inequality obtained in [15] is sharp
for a large class of groups (e.g. matrix groups, solvable groups), it can be nonsharp
for certain other groups. Somewhat surprisingly, we still manage to deduce a sharp
dimension bound for all locally compact groups. This is done through a more in-
volved analysis. The small expansion condition of A′ in Theorem 1.1 can be obtained
using a nonunimodular generalization of an argument of Tao [24] to replace A with
a commensurable approximate groups, as well as a geometric spillover argument.

Theorem 1.1 will be presented as a special case of Theorem 7.1, which applies to
all connected noncompact locally compact groups and pairs (A,B) with the product
set AB have small measures in an appropriate sense compared to the measures of A
and B. This requires us to introduce in addition an notion of Ruzsa’s distance for
nonunimodular groups and develop the related machinery.

In the rest of the introduction, we further explore the behaviours of sets and groups
in Theorem 7.1 when a measure expansion strictly less than 4 occurs.

Theorem 1.3 (Nearly minimal expansions in noncompact groups). Let G be a con-
nected noncompact locally compact group, µG a left Haar measure, and νG a right
Haar measure on G. Suppose A,B are compact subsets of G, each of positive mea-
sure, and

(2)

(
νG(A)

νG(AB)

) 1
2

+

(
µG(B)

µG(AB)

) 1
2

> 1,

Then G is unimodular. In particular, (2) is just µG(AB)1/2 < µG(A)1/2 + µG(B)1/2,
which is µG(A2) < 4µG(A) when A = B.

Moreover, we have the following:

(i) If µG(AB) < µG(A)+µG(B)+ 1
20

min{µG(A), µG(B)}, then there is a continuous
surjective group homomorphism χ : G → R with compact kernel, and two
intervals I, J ⊆ R, such that A ⊆ χ−1(I) and B ⊆ χ−1(J), and

µG(χ−1(I))− µG(A) < 100dG(A,B) µG(χ−1(J))− µG(B) < 100dG(A,B)



SMALL EXPANSIONS IN CONNECTED NONCOMPACT GROUPS 4

where we set dG(A,B) = µG(AB)− µG(A)− µG(B).
(ii) If µG(AB) = µG(A) + µG(B), then there is a continuous surjective group ho-

momorphism χ : G→ R with compact kernel, and two intervals I, J ⊆ R, such
that A = χ−1(I) and B = χ−1(J).

We conjecture that one can replace 1/20 in Theorem 1.3 by 1. It is easy to see
that replacing 1/20 by a constant > 1, the structural characterization obtained in
statement (i) will no longer hold. With more efforts, we also extend Theorem 1.3 to
sets with measure expansions at most 4, see Theorem 7.3.

Theorem 1.3 is the solution to noncompact cases of the Kemperman inverse prob-
lem, which we will now describe. For any compact sets A,B in a connected unimod-
ular group G, Kemperman [17] proved in 1964 that

µG(AB) ≥ min{µG(A) + µG(B), µG(G)}.

The following more general inequality for possibly nonunimodular G was also found
by Kemperman in the same paper:

min

{
νG(A)

νG(AB)
+

µG(B)

µG(AB)
,
µG(G)

µG(AB)

}
≤ 1.

where µG and νG are the left and the right Haar measure of G. Recently, the second
and the third authors [13] generalize the above inequality to possibly disconnected
locally compact groups.

The Kemperman inverse problem is to investigate the structural characterizations
when the equality in Kemperman’s inequality happens or nearly happens. The ques-
tion for equality was asked by Kemperman himself in [17]. By “equality nearly
happens”, we mean that when there is δ > 0 such that

(3) µG(AB) ≤ µG(A) + µG(B) + δ,

and we aim to obtain classifications of the unimodular group G and compact sets
A,B. This problem was proposed by Griesmer and Tao [25].

Prior to Theorem 1.3, the answers to the Kemperman inverse problem is only
known for compact G and when G is (R,+). In more details, with the further
assumption that G is abelian and compact, the conditions for equality to happen
were determined by Kneser [18], and for equality to nearly happens by Tao [25].
Subsequently, Christ and Iliopoulou [4] obtained a sharp exponent version of Tao’s
result, and Griesmer [8] generalizes this to disconnected and compact abelian G.
Recently, the second and the third authors [14] determined when equality holds in the
Kemperman inequality for nonabelian and unimodular G. They also characterized
G,A,B when the equality nearly happens under the further assumption that G is
compact, but their methods does not work when G is noncompact. For G = (R,+),
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the answers follow from the folkloric solution to the 1-dimensional Brunn–Minkowski
inverse problem.

To prove Theorem 1.3, one need Theorem 7.1 (the assymmetric nonunimodular
version of 1.1) as the new ingredient together with some further geometric arguments.
On the other hand, we note that the method developed in this paper does not work
for compact groups, as the Brunn–Minkowski inequality becomes trivial when the
group is compact.

Organization of the paper. The paper is organized as follows. In Section 2, we
provide some background on locally compact groups. In Section 3, we introduce the
Brunn–Minkowski coefficient of groups, and prove a bounded dimension Lie quotient
theorem for groups with bounded Brunn–Minkowski coefficients. In Section 4, we
introduce a nonunimodular version of the Ruzsa distance, and use it to link the
small expansion sets and open approximate groups. In Section 5, we prove quotient
domination results when the sets have small measure expansions. In Section 6, we
study sets with minimal expansions in nonunimodular groups. We then prove all the
main theorems in Section 7.

2. Preliminaries

Throughout the paper, G is a connected locally compact group, µG is a left Haar
measure and νG is a right Haar measure on G. When the ambient group is clear in
the context, we sometimes simply use µ and ν to denote the left and the right Haar
measures respectively. All the log in this paper are logarithms with base 2. We say
G is unimodular if a left Haar measure is also a right Haar measure on G.

The structure of locally compact groups was characterized by Gleason [6] and
Yamabe [26], which resolved Hilbert’s 5th problem:

Fact 2.1 (Gleason–Yamabe Theorem). Suppose G is a locally compact group. Then
there is an open subgroup G′ of G, such that for any open neighborhood U of G′

containing identity, there is a compact normal subgroup H ⊆ U , such that G′/H is
a Lie group.

Given a locally compact group G, and µ is a left Haar measure on G. Define
µx(A) = µ(Ax) for every x ∈ G and every measurable sets A. For every x ∈ G, the
modular function is defined by ∆G : x 7→ µx/µ. In particular when the image of ∆G

is always 1, G is unimodular. In general, ∆G takes values in R>0. The following fact
from [1] records some basic properties of the modular function:

Fact 2.2. Let G be a locally compact group, µ a left Haar measure and ν a right
Haar measure on G.

(i) Suppose H is a normal closed subgroup of G, then ∆H = ∆G|H . In particular,
if H = ker ∆G, then H is unimodular.
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(ii) The function ∆G : G→ R>0 is a continuous homomorphism.
(iii) For every x ∈ G and every measurable set A, we have µ(Ax) = ∆G(x)µ(A),

and ν(xA) = ∆−1
G (x)ν(A).

(iv) There is a constant c such that
∫
G
f dµ = c

∫
G
f∆G dν for every f ∈ Cc(G).

Let φ be an automorphism on G. Clearly, φ−1(µ) is also a left Haar measure on G.
The number φ−1(µ)/µ is called modulus of the automorphism φ, and is denoted
by modG(φ). We use the following fact from [2, Proposition 2.7.10]

Fact 2.3. Let G be a locally compact group, H be a closed normal subgroup of G, and
π : G→ G/H is the quotient map. Let u be an automorphism of G with u(H) = H,
u′ is the restriction of u on H, and u′′ is the projection of u on G/H. Then

modG(u) = modH(u′) ·modG/H(u′′).

We use the following integral formula [5, Theorem 2.49] in our proofs.

Fact 2.4 (Quotient integral formula). Let G be a locally compact group, and let H
be a closed normal subgroup of G. Given µG, µH left Haar measures on G and on
H. Then there is a unique left Haar measure µG/H on G/H, such that for every
f ∈ Cc(G), ∫

G

f(x) dµG(x) =

∫
G/H

∫
H

f(xh) dµH(h) dµG/H(x).

The following well-known fact is the Freiman 3k − 4 theorem over R.

Fact 2.5 (3k − 4 theorem in R). Suppose A,B are compact subsets of R, and λ is
the Lebesgue measure on R. If

λ(A+B) < λ(A) + λ(B) + min{λ(A), λ(B)},
then there are compact intervals I, J ⊆ R, with

λ(I) ≤ λ(A+B)− λ(B), λ(J) ≤ λ(A+B)− λ(A),

and A ⊆ I, B ⊆ J .

3. Small expansions and low dimension Lie quotients

Let G be a noncompact group. Given two compact sets A,B ⊆ G with positive
measures, the Brunn–Minkowski coefficient of (A,B) is the real number r ≥ 0
such that (

ν(A)

ν(AB)

) 1
r

+

(
µ(B)

µ(AB)

) 1
r

= 1.

In this case, we write BM(A,B) = r. Assuming that G is unimodular, we have

µ(AB)1/r = µ(A)1/r + µ(B)1/r.
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If, moreover, A = B, then µ(A2) = 2rµ(A). Thus, we can think of r as a measuring
of the expansion of the pair (A,B) where we allow A and B to have different size.

The Brunn–Minkowski coefficient of G is the largest nonnegative real number
r such that

BM(A,B) ≥ r for every compact A,B ⊆ G with positive measures.

In this case, we write BM(G) = r. The classical Brunn–Minkowski inequality for Rd

tells us that BM(Rd) = d.
The problem of determining the Brunn–Minkowski for general locally compact

group was studied by the second, third, and fourth author in [15]. Toward stating
our conjectural answer, we define the noncompact Lie dimension ndim(G) of G
as follows. Using Theorem 2.1, one can choose an open subgroup G′ of G and a
normal compact subgroup H of G′ such that G′/H is a Lie group. Set

ndim(G) = dim(G′/H)−max{dim(K) : K is a compact subgroup of G′/H}.
It was verified in [15] that ndim(G) is well-defined (i.e., it is independent of the choice
of G′). The following properties of ndim(G), proven in [15], will be used later on.

Fact 3.1. Let G be a locally compact group. Then

(i) If G is compact, then ndim(G) = 0.
(ii) Suppose 1 → H → G → G/H → 1 is a short exact sequence of connected Lie

groups. Then ndim(G) = ndim(H) + ndim(G/H).

Below is the conjecture proposed in [15]; it was also proven there that it suffices
to verify the conjecture for simply connected simple Lie groups.

Conjecture 3.2 (Nonabelian Brunn–Minkowski Conjecture). If G is a locally com-
pact group with noncompact Lie dimension n, then BM(G) = n.

We next review the result toward Conjecture 3.2 proven in [15]; this will be a
central ingredient in our later proof. We have the following fact of Lie groups, which
is a consequence of [9, Proposition 5.4.3]:

Fact 3.3. Suppose g is a Lie algebra. Then g has a largest solvable ideal q. If G
is a Lie group with Lie algebra g and exp : g → G is the exponential map, then
Q = 〈exp(q)〉 is the largest closed connected solvable normal subgroup of G. Hence,
Q is a characteristic subgroup of G.

We call such Q in Fact 3.3 the radical of G. A Lie group is semisimple if its Lie
algebra is semisimple, or equivalently, if it has trivial radical. The following fact is
also a consequence of [9, Proposition 5.4.3]:

Fact 3.4. Let G be a connected Lie group. Let Q be the radical of G. Then S = G/Q
is a semisimple Lie group.
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Now we are going to define the helix dimension of a locally compact group G,
denoted by hdim(G). Let G′/H be the Lie group obtained from Theorem 2.1, and let
Q be the radical of G′/H. Note that (G′/H)0/Q) has discrete center Z((G′/H)0/Q).
We set

hdim(G) = rank(Z((G′/H)0/Q)).

In [15], hdim(G) is well-defined, i.e., it is independent of the choice of G′. In general,
as shown in [15], hdim(G) is not split with respect to short exact sequences. However,
we have the following fact which is proven in [15].

Fact 3.5. Let G be a locally compact group. Then

(i) Suppose 1→ H → G→ G/H → 1 is a short exact sequence of connected locally
compact groups, and H is compact. Then hdim(G) = hdim(G/H).

(ii) Suppose 1 → H → G → R → 1 is a short exact sequence of locally compact
groups. Then hdim(G) = hdim(H).

(iii) Let G be a connected Lie group of noncompact dimension n and helix dimension
h. Then n ≥ 3h. If G is semisimple, and n > 0, then n ≥ 2.

The following fact is the main result of [15].

Fact 3.6 (Jing–Tran–Zhang). Let G be a locally compact group such that ndim(G) =
n and hdim(G) = h. Then,

n− h ≤ BM(G) ≤ n.

Moreover, solvable locally compact groups and real algebraic groups has helix dimen-
sion 0, so this verifies the nonabelian Brunn–Minkowski conjecture for these groups.

We will also need the following facts about Lie groups.

Fact 3.7. We have the following:

(i) Any two maximal compact subgroups of a connected Lie group are conjugate.
(ii) A maximal compact subgroup of GL(n,R) is the orthogonal group O(n), which

has dimension n(n− 1)/2.

We now prove the following key lemma.

Lemma 3.8. Let G be a connected locally compact group with noncompact dimension
n and helix dimension h. Then G has a compact connected characteristic subgroup
H such that G/H is a Lie group of dimension at most (n− h)(n− h+ 1)/2.

Proof. By the Gleason–Yamabe theorem (Fact 2.1), we can assume that G is a con-
nected Lie group. Let us divide the proof into steps.

Step 1. We first prove the weaker statement that there is a compact connected
characteristic subgroup H of G such that dimG/H ≤ n(n + 1)/2. Let K be a
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maximal compact subgroup of G, and denote the Lie algebras of G and K by g
and k, respectively. Let AdK : K → GL(g) be the adjoint representation of K on g.
Since K is compact, there is an AdK-invariant inner product on g, and the orthogonal
complement of k in g, denoted by p, is AdK-invariant. Let

ρ : K → GL(p)

be the subrepresentation of AdK , and H := Ker(ρ)◦ be the identity component of
the Ker(ρ). We will show that the compact group H satisfies the requirement.

First, the space p has dimension n, so by Fact 3.7(ii), we have

dimG/H = dimG/K + dimK/H = n+ dim ρ(K) ≤ n+ n(n− 1)/2 = n(n+ 1)/2.

Next, we prove that H is normal in G. Since H is connected, it suffices to show
that the Lie algebra h of H is an ideal of g. Clearly, h is an ideal of k. On the
other hand, since H acts trivially on p, we have [h, p] = 0. Thus [h, g] = [h, k⊕ p] =
[h, k] + [h, p] ⊂ h. Hence h is an ideal of g.

Finally, we show that σ(H) = H for every σ ∈ Aut(G). Since σ(K) is again
a maximal compact subgroup of G, there exists g ∈ G such that cg(K) = σ(K),
where cg is the inner automorphism of G induced by g. Since the automorphism
τ := cg−1 ◦ σ satisfies τ(K) = K, it follows from the definition of H that τ(H) = H.
Thus σ(H) = cg(τ(H)) = cg(H) = H. This proves that H is a characteristic
subgroup of G.

Step 2. We now prove the lemma for the case that G is semisimple without
nontrivial connected compact characteristic subgroups. In this case, G/Z(G) is again
semisimple without nontrivial connected compact characteristic subgroups. Denote
n′ = ndim(G/Z(G)). Then n = n′ + rank(Z(G)), h = rank(Z(G)). It follows that
n− h = n′. By Step 1, we have

dimG = dimG/Z(G) ≤ n′(n′ + 1)

2
=

(n− h)(n− h+ 1)

2
.

This proves the lemma for such G.

Step 3. For the general case, let Q be the radical of G, K ⊆ G/Q be the
maximal connected compact characteristic subgroup of G/Q, and R ⊆ G be the
preimage of K under the quotient homomorphism G→ G/Q. Then R is a connected
characteristic closed subgroup of G, and G/R ∼= (G/Q)/K is semisimple without
nontrivial connected compact characteristic subgroups. Denote n1 = ndim(R), n2 =
ndim(G/R), h2 = hdim(G/R). By Steps 1 and 2, there is a connected compact
characteristic subgroup H of R such that

dimR/H ≤ n1(n1 + 1)

2
,
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and we have

dimG/R ≤ (n2 − h2)(n2 − h2 + 1)

2
.

The group H is also characteristic in G, and we have n = n1 +n2, h = h2. It follows
that

dimG/H = dimR/H + dimG/R ≤ n1(n1 + 1)

2
+

(n2 − h2)(n2 − h2 + 1)

2

≤ (n− h)(n− h+ 1)

2
.

This completes the proof. �

We now prove the first main result of this section.

Theorem 3.9. Suppose G is a connected locally compact group with BM(G) = r.
Then there is a connected compact normal subgroup H of G such that G/H is a Lie
group of dimension at most r(r + 1)/2.

Proof. This is a combination of Fact 3.6 and Lemma 3.8. �

The following facts [12] come from the classification of Lie algebra of dimensions
at most 2.

Fact 3.10. Suppose G is a simply connected Lie group. We have the following:

(i) if dim(G) = 1, then G = R;
(ii) if dim(G) = 2, then G is either R2 or the affine group of the line Aff(1).

Lemma 3.11. Let G be a connected locally compact group with noncompact dimen-
sion n and helix dimension h. Then we have the following:

(i) If n− h = 1, then there is a connected compact normal subgroup H of G such
that G/H is R.

(ii) If n − h = 2, then there is a connected compact normal subgroup H of G
such that G/H is either R2, the affine group of the line, a semidirect product
R2 o T, or a cover of PSL2(R).

Proof. To prove (i), we need only to notice that by Lemma 3.8, there is a connected
compact normal subgroup H of G such that G/H is a connected Lie group with
dimG/H ≤ 1. Since n > 0, G/H is noncompact, hence is isomorphic to R.

We now prove (ii). In view of Lemma 3.8, Facts 3.1(ii) and 3.5(i), and quotienting
out the maximal connected compact normal subgroup of G if necessary, we may
assume that G is a connected Lie group without nontrivial connected compact normal
subgroups such that dimG ≤ 3 and n − h = 2. Note that dimG ≥ n ≥ 2. So
dimG = 2 or 3. If dimG = 2, then n = 2, and it follows from the classification
of 2-dimensional Lie algebras (Fact 3.10(ii)) that G is either R2 or the affine group
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of the line. Assume that dimG = 3. Then G is either semisimple or solvable. If
G is semisimple, since it is noncompact, it must be a cover of PSL2(R). Assume
that G is solvable. Then h = 0, thus n = 2. It follows that G has a 1-dimensional
maximal compact subgroup, say K, which must be isomorphic to T. As in the proof
of Lemma 3.8, we take an AdK-invariant subspace p of g complementary to k, and
consider the subrepresentation ρ : K → GL(p) of AdK . Let us identify K with
T = {eiθ : θ ∈ [0, 2π)}. Since dim p = 2, there exist an integer k and a basis {X, Y }
of p such that the matrix of ρ(eiθ) is(

cos kθ − sin kθ
sin kθ cos kθ

)
.

It follows that there is a nonzero vector Z ∈ k such that [Z,X] = kY , [Z, Y ] = −kX.
If k = 0, then k is an ideal of g, which implies that K is normal in G, contradicting
to the assumption that G has no nontrivial connected compact normal subgroups.
So k 6= 0. It follows that p ⊂ [g, g]. Since g is solvable, we must have [g, g] = p.
Suppose [X, Y ] = aX + bY , where a, b ∈ R. By the Jacobi identity, we have

0 = [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]

= [X, kX] + [Y, kY ] + [Z, aX + bY ] = akY − bkX.

So a = b = 0. It follows that p is an abelian ideal of g. Thus g = pok. This, together
with the fact that K is maximal compact in G, implies that G is isomorphic to a
semidirect product R2 o T. �

The next theorem is the second main result of the section.

Theorem 3.12. Let G be a connected noncompact locally compact group, and let
A,B be compact subsets of G. Then we have the following:

(i) If BM(A,B) < 2, then there is a continuous surjective group homomorphism
with compact connected kernel mapping G to R.

(ii) If BM(A,B) < 3, then there is a continuous surjective group homomorphism
with compact connected kernel mapping G to either R, R2, R2 o T, the affine
group of the line, or a cover of PSL2(R).

If the nonabelian Brunn–Minkowski conjecture holds, we can strengthen the last case
of (ii) into a finite cover of PSL2(R).

Proof. Statements (i) and (ii) follow from Fact 3.6 and Lemma 3.11. If the non-
abelian Brunn–Minkowski conjecture holds and the last case of (ii) is an infinite

cover of PSL2(R) (which must be S̃L2(R)), then BM(A,B) ≥ BM(G) = ndim(G) =

ndim(S̃L2(R)) = 3, a contradiction. �



SMALL EXPANSIONS IN CONNECTED NONCOMPACT GROUPS 12

4. Nonunimodular Ruzsa distance and open approximate groups

In this section, we introduce a generalization of Ruzsa’s distance in nonunimodular
groups, which will be used in the next section. Throughout the section, G is a (not
necessarily connected) locally compact group, µG is a left Haar measure, and νG is a
right Haar measure on G. We will also assume that νG = µ−1

G , but this assumption
will not be needed until after Lemma 4.2. Suppose A,B are compact subsets of G
of positive measures. Let

(4) d(A,B) = log
νG(AB−1)µG(AB−1)

νG(A)µG(B−1)
.

It is easy to see that d(A,A) = 0 if and only if A is a right translation of a subgroup
of G. Thus for most of the sets A, we will have d(A,A) > 0. On the other hand, the
distance still behaves like a metric in many aspects:

Lemma 4.1. Let d be as in (4), and A,B,C are compact subsets of G with positive
measures. Then we have

(i) (Nonnegativity) d(A,B) ≥ 0;
(ii) (Symmetric) d(A,B) = d(B,A);

(iii) (Left translation invariance) d(A,B) = d(aA, bB) for every a, b ∈ G;
(iv) (Triangle inequality) d(A,B) ≤ d(A,C) + d(C,B).

Note that when G is unimodular, by ignoring a constant factor, (4) becomes

dR(A,B) = log
µG(AB−1)√
µG(A)µG(B−1)

,

which is known as Ruzsa’s distance. Lemma 4.1 for Ruzsa’s distance was first es-
tablished by Ruzsa [21] for discrete groups, and extended by Tao [24] to unimodular
groups. Our proof below is similar as the one in [21, 24].

Proof of Lemma 4.1. Statement (i) is immediate from the definition. Statement (ii)
is also clear in the special case where νG = µ−1

G ; the more general case follows from
the uniqueness of Haar measure. Next, observe that

d(aA, bB) = log
νG(aAB−1)µG(AB−1b−1)

νG(aA)µG(B−1b−1)

= log
∆G(a)−1νG(AB−1)∆G(b)−1µG(AB−1)

∆G(a)−1νG(A)∆G(b)−1µG(B−1)
= d(A,B),

which proves (iii). Finally, to show the triangle inequality, it suffices to show that

(5) νG(AB−1)µG(AB−1)µG(C)νG(C) ≤ νG(AC−1)µG(AC−1)νG(CB−1)µG(CB−1).
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Using the right translation invariance of νG we get

νG(AC−1)νG(CB−1) =

∫∫
G×G

1AC−1(x)1CB−1(y) dνG(x) dνG(y)

=

∫
G

(∫
G

1AC−1(zy−1)1CB−1(y) dνG(y)

)
dνG(z).

Note that when z is in AB−1, there are a ∈ A and b ∈ B such that z = ab−1. When
y ∈ Cb−1, clearly 1AC−1(zy−1)1CB−1(y) = 1. As νG(Cb−1) = νG(C), we have

νG(AC−1)νG(CB−1) ≥
∫
G

1AB−1(z)νG(C) dνG(z) = νG(AB−1)νG(C).

Likewise, µG(AC−1)µG(CB−1) ≥ µG(AB−1)µG(C), and this proves (5). �

We will need the following nonunimodular version of Ruzsa’s covering lemma:

Lemma 4.2. Suppose A,B are compact subsets of G. Then we have the following:

(i) If νG(AB) ≤ KνG(A), then there exists a finite subset Ω ⊆ B of cardinality at
most K such that B ⊆ A−1AΩ.

(ii) If µG(AB) ≤ KµG(B), then there exists a finite subset Ω ⊆ A of cardinality at
most K such that A ⊆ ΩBB−1.

Proof. We will only prove (i), as the proof of (ii) is the same. Let Ω be a maximal
subset of B such that right translations of A by elements in Ω are pairwise disjoint.
Thus by the right-translation invariance of νG, |Ω| ≤ K. By the maximality of Ω, for
every y ∈ B, there is y0 ∈ Ω such that Ay∩Ay0 6= ∅. This implies B ⊆ A−1AΩ. �

Given two compactly supported functions f and g on G, recall that the convolution
f ∗ g is defined as

f ∗ g(x) =

∫
G

f(y)g(y−1x) dµG(y).

WhenG is nonunimodular, in general we do not have f∗g(x) =
∫
G
f(xy−1)g(y) dµG(y).

Using the fact that νG = µ−1
G , one can easily show that

f ∗ g(x) =

∫
G

f(xy−1)g(y) dνG(y).

We define the (right) multiplicative energy E(A,B) =
∫

(1A∗1B)2 dνG. The following
lemma gives us the relation between E(A,A−1) and E(A−1, A).

Lemma 4.3. Let A be a compact subset of G. Then

E(A−1, A) ≥ max
a∈A

1

∆(a)
E(A,A−1).
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Proof. We use f̃(x) to denote f(x−1). Then from the definition we have

E(A−1, A) =

∫
G

(1A−1 ∗ 1A(x))2 dνG(x) = ˜1A−1 ∗ 1A ∗ 1A−1 ∗ 1A(1).

Using the fact that f̃ ∗ g = g̃ ∗ f̃ , the right hand side of the above equality can be
rewritten as

1̃A ∗ 1̃A−1 ∗ 1A−1 ∗ 1A(1),

which is the same as

1A−1 ∗ 1A ∗ 1A−1 ∗ 1A(1).

We now use the definition of the convolution, and the above quantity is equal to∫
G

1A−1(y−1)(1A ∗ 1A−1 ∗ 1A(y)) dνG(y).

By Fact 2.2 (iv), the above quantity can be rewritten as∫
G

1A−1(y−1)1A ∗ 1A−1 ∗ 1A(y)
1

∆(y)
dµG(y).

Hence we have

E(A−1, A) ≥ max
a∈A

1

∆(a)
1A ∗ 1A−1 ∗ 1A ∗ 1A−1(1).

On the other hand, by a similar argument, we have

E(A,A−1) = ˜1A ∗ 1A−1 ∗ 1A ∗ 1A−1(1) = 1A ∗ 1A−1 ∗ 1A ∗ 1A−1(1),

and the lemma follows. �

As a corollary of Lemma 4.3, one can see that when G is unimodular, we have

E(A,A−1) = E(A−1, A).

Definition 4.4 (Approximate groups). An open and precompact set A ⊆ G is a
K-approximate group, if A = A−1, idG ∈ A, and A2 ⊆ ΩA for some finite set Ω of
cardinality at most K.

We define the (right-translation) approximate measure stabilizer

StabενG(A) = {g ∈ G : νG(A \ Ag) < ε},

where ε < νG(A). We have the following simple observation, and the proof is straight-
forward.

Fact 4.5. If A is compact, then S = StabεG(A) contains 1G and is open, precompact,
and equal to S−1.
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The following proposition is a nonunimodular analog of [24, Proposition 4.5]. The
proof is similar as the one in [24], with certain modifications for the nonunimodular
groups.

Proposition 4.6. Suppose A is a compact subset of G with νG(AA−1) ≤ KµG(A)
and maxa∈A ∆(a) = 1. Let

S = Stab(2K−1)νG(A)/2K
νG

(A).

Then we have the following:

(i) S is symmetric and S ⊆ A−1A;
(ii) νG(S) ≥ µG(A)/2K;

(iii) for all integers n ≥ 1, νG(ASnA−1) ≤ 2nK2n+1µG(A).

Proof. (i) is straightforward by the way we construct S. Indeed, for every s ∈ S,
A ∩ As 6= ∅ and hence S ⊆ A−1A. By the Cauchy–Schwarz inequality, we have

E(A−1, A) ≥ E(A,A−1) ≥ νG(A)2µG(A)2

νG(AA−1)
≥ νG(A)2µG(A)

K
.

Also by the choice of S, we have∫
G\S

(1A−1 ∗ 1A(x))2 dνG(x) ≤ νG(A)

2K

∫
G

1A−1 ∗ 1A(x) dνG(x) ≤ νG(A)2µG(A)

2K
.

Thus we have ∫
S

(1A−1 ∗ 1A(x))2 dνG(x) ≥ νG(A)2µG(A)

2K
.

This gives us νG(S) ≥ µG(A)/2K, which proves (ii).
Next we prove statement (iii). Note that we have∫

Gn+1

1ASnA−1(y0 · · · yn)
n∏
i=0

(
1AA−1(yi) dνG(yi)

)
(6)

=

∫
Gn+1

1ASnA−1(x)1AA−1(xy−1
n · · · y−1

1 )
n∏
i=1

(
1AA−1(yi) dνG(yi)

)
dνG(x).(7)

Fix an arbitrary x ∈ ASnA−1. Then we can fix a, bn ∈ A and s1, . . . , sn ∈ S such
that x = as1 · · · snb−1

n . For b0, . . . , bn−1 ∈ G, if we set yi = bi−1sib
−1
i for 1 ≤ i ≤ n,

then xy−1
n · · · y−1

1 = ab−1
0 . Thus∫

Gn

1AA−1(xy−1
n · · · y−1

1 )
n∏
i=1

(
1AA−1(yi) dνG(yi)

)
=

∫
Gn

1AA−1(ab−1
0 )

n∏
i=1

(
1AA−1(bi−1sib

−1
i ) dνG(bi−1)

)
.
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The above integrand is 1 if bi ∈ A and bisi+1 ∈ A for 0 ≤ i ≤ n − 1. Hence, the
above integral is at least∫

Gn

n−1∏
i=0

1A(bi)1A(bisi+1) dνG(bi) =
n−1∏
i=0

νG(A ∩ As−1
i+1) ≥

(
νG(A)

2K

)n
as si are from the approximate measure stabilizer S. Thus, (7) is at least

νG(ASnA−1)(νG(A)/2K)n.

On the other hand, (6) is bounded from above by

νG(AA−1)n+1 ≤ Kn+1µG(A)n+1.

Note that as we have

νG(A) =

∫
G

1A(x)
1

∆G(x)
µG(A) ≥ µG(A),

so νG(AA−1)n+1 ≤ Kn+1µG(A)νG(A)n. This proves the proposition. �

The next theorem says that sets with small Ruzsa’s distance are commensurable
to approximate groups. This is the nonunimodular counterpart of [24, Theorem 4.6].

Theorem 4.7. Suppose A,B are compact subsets of G, and d(A,B−1) ≤ logK.
Then there is H ⊆ G satisfying:

(i) (group-like) H is a 64K12-approximate group;

(ii) (smallness) µG(H) = νG(H) ≤ 4K5(νG(A)µG(B))
1
2 ;

(iii) (largeness) A ⊆ ΩH and B ⊆ HΩ where |Ω| ≤ 33K12.

Proof. Choose g1 ∈ A, and g2 ∈ B such that ∆G(g1) = maxa∈A ∆G(a). Replacing
A with g−1

1 A and B with Bg−1
2 if necessary, we can arrange that idG ∈ A ∩ B and

maxa∈A ∆(a) = 1.
By Lemma 4.1,

d(A,A) ≤ 2d(A,B−1) ≤ 2 logK,

that is νG(AA−1) ≤ KµG(A) since we chose νG = µ−1
G . Let

S = Stab(2K−1)νG(A)/2K
νG

(A).

Note that Sn ⊆ ASnA−1. By Proposition 4.6, we have

νG(S5) ≤ νG(AS5A−1) ≤ 32K11µG(A) ≤ 64K12νG(S).

As S is symmetric, by Lemma 4.2, S2 is a 64K12-approximate group. Let H = S2.
Also by Proposition 4.6 again we have

νG(H) ≤ νG(AHA−1) ≤ 4K5νG(A).
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By Proposition 4.6 again and the fact that idG ∈ A,

νG(HA−1) ≤ νG(AHA−1) ≤ 4K5µG(A) ≤ 8K6νG(S) ≤ 8K6νG(H).

Hence by Lemma 4.2, there is Ω1 ⊆ A of cardinality at most 8K6 such that A ⊆ Ω1H.
By Lemma 4.1 again, d(B−1, H) ≤ d(A,B−1) + d(A,H), and

d(A,H) = log
νG(AH)µG(AH)

νG(A)µG(H)
≤ log

4K5νG(A)8K6µG(H)

νG(A)µG(H)
= log 32K11.

This implies that

νG(HB) ≤ 32K12νG(H)
µG(B)

µG(HB)
≤ 32K12νG(H).

Thus by Lemma 4.2 again, there is Ω2 ⊆ B of cardinality at most 32K12 such that
B ⊆ HΩ2. Set Ω = g−1

1 Ω1 ∪ Ω2g
−1
2 . Note that by Kemperman’s inequality, we may

assume K ≥ 4, and hence |Ω| ≤ 33K12 which finishes the proof. �

5. Quotient Dominations

In this section, we assume there is a short exact sequence

1→ H → G→ G/H → 1,

where H is a compact subgroup of G. We first consider the case when sets (A,B) has
minimal measure expansion on G. In this case, we will have a quotient domination
result.

Theorem 5.1 (Quotient dominations). Let G be a connected unimodular noncom-
pact group, and BM(G) = n. Let A,B be compact subsets in G such that

µG(AB)
1
n = µG(A)

1
n + µG(B)

1
n .

Suppose π : G → G/H is the quotient map. Then there are compact sets A′, B′ in
G/H with

µG/H(A′B′)
1
n = µG/H(A′)

1
n + µG/H(B′)

1
n ,

and A = π−1(A′), B = π−1(B′).

Proof. Define the fiber length function G/H → R:

fA(g) = µH(g−1A ∩H).

We similarly define fiber length functions for B and for AB. We use L+
f to denote

the superlevel set of f , that is

L+
f (t) = {x ∈ G : f(x) ≥ t}.
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From the fact that µG can be pushed forward to a Haar measure on G/H, one can
see that BM(G/H) ≥ n. It is clear that BM(H) = 0. Hence,

(8) µ
1/n
G/H

(
L+
fAB

(max{t1, t2})
)
≥ µ

1/n
G/H

(
L+
fA

(t1)
)

+ µ
1/n
G/H

(
L+
fB

(t2)
)
.

Given a compact set Ω in G, we define

EΩ(t) = µ
1/n
G/H(L+

fΩ
(t)).

Thus by (8), we have EAB(max{t1, t2}) ≥ EA(t1) + EB(t2) for all t1, t2 ∈ R. It then
follows that

(9) µR(L+
EAB

(s1 + s2)) ≥ max{µR(L+
EA

(s1)), µR(L+
EB

(s2))}.
Now we consider µG(AB). We have

µ
1/n
G (AB) =

(∫
R>0

En
AB(s) ds

)1/n

=

(∫
R>0

nsn−1µR(L+
EAB

(s)) ds

)1/n

(10)

Note that suptEA(t) = µG/H(πA) and suptEB(t) = µG/H(πB). Then n−1/nµ
1/n
G (AB)

is at least(
(µG/H(πA) + µG/H(πB))n

∫ 1

0

sn−1µR(L+
EAB

(µG/H(πA) + µG/H(πB))s) ds

) 1
n

.

Using (9), the above quantity is at least(
(µG/H(πA) + µG/H(πB))n

·max

{∫ 1

0

sn−1µR(L+
EA

(µG/H(πA)s) ds,

∫ 1

0

sn−1µR(L+
EB

(µG/H(πB)s) ds

})1/n

Now by Hölder’s inequality, the above quantity is at least(
µG/H(πA)n

∫ 1

0

sn−1µR(L+
EA

(µG/H(πA)s)) ds

)1/n

+

(
µG/H(πB)n

∫ 1

0

sn−1µR(L+
EB

(µG/H(πB)s)) ds

)1/n

.

It is easy to check the above quantity is equal to

n−1/nµ
1/n
G (A) + n−1/nµ

1/n
G (B).

Since we have that µG(AB)1/n = µG(A)1/n +µG(B)1/n, equalities hold everywhere
in the above inequalities. This in particular implies that

µG/H(πAπB)
1
n = µG/H(πA)

1
n + µG/H(πB)

1
n ,
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and µG(A) = µG/H(πA), µG(B) = µG/H(πB). By the compactness assumption of A
and B, we have A = π−1πA and B = π−1πB. �

We introduce the notion of discrepancy, which is standard in the literature.

Definition 5.2 (discrepancy). Let G be a unimodular group, and µG a Haar measure
on G. Given compact sets A,B ⊆ G, the discrepancy of A and B, denoted by
dG(A,B), is µG(AB)− µG(A)− µG(B).

When dG(A,B) is small, we use the following theorem [14, Theorem 6.5] by the
middle two authors.

Theorem 5.3 (Almost quotient dominations). Let G be a connected noncompact
unimodular group, and A,B be compact subsets in G such that

dG(A,B) < min{µG(A), µG(B)}.

Then there are compact sets A′, B′ in G/H with

dG/H(A′, B′) < 7dG(A,B),

and µG(A4 π−1(A′)) ≤ 3dG(A,B), µG(B4 π−1(B′)) ≤ 3dG(A,B).

Let π : G→ G/H be the quotient map. For an open approximate group A on G,
one can easily see that πA is also an open approximate group on G/H. The next
proposition show that small expansion sets have a similar behaviour.

Proposition 5.4. Let G be a connected noncompact unimodular group, and A a
compact subset of G with positive measure. Suppose µG(A2) ≤ KµG(A), and π :
G→ G/H is the quotient map. Then µG/H(πA2) ≤ 64K6µG/H(πA).

Proof. Let fA : G/H → R be the fiber length function that fA(g) = µH(g−1A ∩H).
Set α = supg fA(g), clearly α ≤ 1. Set N = 2K. Define

πA1 =
{
g ∈ G/H : fA(g) ≥ α

N

}
, and πA2 = πA \ πA1.

Note that KµG(A) ≥ µG(A2) ≥ αµG/H(πA) ≥ µG(A) + (1 − 1/N)αµG/H(πA2).
Hence,

µG/H(πA2) ≤ K − 1

α

N

N − 1
µG(A)

≤ K − 1

α

N

N − 1

(
αµG/H(πA1) +

α

N
µG/H(πA2)

)
.

By the choice of N , we have

µG/H(πA2) ≤ 2(K − 1)µG/H(πA1).
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On the other hand, we have

µG/H(πA1πA1) ≤ N

α
µG(A2)

≤ KN

α

(
αµG/H(πA1) +

α

N
µG/H(πA2)

)
≤ 2K(2K − 1)µG/H(πA1).

For µG/H(πAπA1) and µG/H(πA1πA), we use similar ideas to get

max{µG/H(πAπA1), µG/H(πA1πA)} ≤ N

α
µG(A2)

≤ 2K(2K − 1)µG/H(πA1)

≤ 2K(2K − 1)(µG/H(πA1)µG/H(πA))
1
2 .

Let d be the Ruzsa distance defined in (4). Hence d(πA1, (πA1)−1) ≤ 2 log 2K(2K −
1), and max{d(πA1, (πA)−1), d(πA, (πA1)−1)} ≤ 2 log 2K(2K−1). Using Lemma 4.1,

d(πA, (πA)−1) ≤ d(πA, (πA1)−1) + d((πA1)−1, πA1) + d(πA1, (πA)−1)

≤ 2 log 8K3(2K − 1)3.

This implies µG/H(πA2) ≤ 64K6µG/H(πA). �

It might be of interestcc c to improve the constant 64K6 in the above lemma.

6. Minimal expansions in nonunimodular groups

In this section, we will study the sets with minimal expansions in nonunimodu-
lar groups. Suppose G is a nonunimodular group with BM(G) = 2, the Brunn–
Minkowski inequality given in [15] asserts that for any compact sets A,B one has(

νG(A)

νG(AB)

) 1
2

+

(
µG(B)

µG(AB)

) 1
2

≤ 1.

Our main result in the section is the following theorem, which shows that the equality
in the above inequality cannot hold under certain conditions.

Proposition 6.1. Let G be a nonunimodular connected locally compact group, and
A is a compact subset of G with positive measure. Then(

νG(A)

νG(A2)

) 1
2

+

(
µG(A)

µG(A2)

) 1
2

< 1.

Proof. Note that G is nonunimodular. Let H = ker ∆G, then G/H ∼= R>0. As G
is nonunimodular, H is noncompact. Note also that H is unimodular. Let µR be a
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Haar measure on R>0 with respect to multiplication. Define the right and left fiber
length functions G/H → R:

rA(g) = µH(Ag−1 ∩H), `A(g) = µH(g−1A ∩H).

In particular, we have

(11) `A(g) = ∆G(g)−1rA(g).

We similarly define the right and left fiber length function for A2. Note that for
compact sets X1, X2 ⊆ H, and g1, g2 ∈ G, X1g1g2X2 ⊆ g1g2H = Hg1g2 as H is
normal. By Kemperman’s inequality on H and Fact 2.3, we have

µH((g1g2)−1X1g1g2X2) ≥ µH((g1g2)−1X1g1g2) + µH(X2)

= ∆G((g1g2)−1)µH(X1) + µH(X2),(12)

and similarly,

µH(X1g1g2X2(g1g2)−1) ≥ µH(X1) + µH(g1g2X2(g1g2)−1)

= µH(X1) + ∆G(g1g2)µH(X2).(13)

Now we consider νG(A2). By the quotient integral formula, we have

νG(A2) =

∫
G/H

rA2(g) dµR(g).

Note that (Hg)2 = Hg2 as H is normal, we have the natural lower bound of the
right hand side ∫

G/H

rA2(g2)1supp(rA)(g) dµR(g2),

and by (13) this is at least

2

∫
G/H

rA(g) + ∆G(g2)`A(g) dµR(g) = 2νG(A) + 2

∫
G/H

∆G(g2)`A(g) dµR(g).

Similarly, using the quotient integral formula we obtain

µG(A2) =

∫
G/H

`A2(g) dµR(g) ≥
∫
G/H

`A2(g2)1supp(`A)(g) dµR(g2).

Now by (12) the right hand side at least

2

∫
G/H

∆G(g2)−1rA(g) + `A(g) dµR(g) = 2µG(A) + 2

∫
G/H

∆G(g2)−1rA(g) dµR(g).
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By applying the above lower bounds on ν(A2) and µ(A2), we have(
νG(A)

νG(A2)

) 1
2

+

(
µG(A)

µG(A2)

) 1
2

≤

 1

2 +
2
∫

∆G(g2)`A(g) dµR
νG(A)

 1
2

+

 1

2 +
2
∫

∆G(g2)−1rA(g) dµR
µG(A)

 1
2

.

Using the fact that νG(A) =
∫
G/H

rA(g) dµR and µG(A) =
∫
G/H

`A(g) dµR, together

with (11) and Hölder’s inequality, we have that the right hand side of the above
quantity is at most∫

G/H
∆G(g)`A(g) dµR∫

G/H
∆G(g)`A(g) dµR +

∫
G/H

∆G(g)2`A(g) dµR
+

∫
G/H

`A(g) dµR∫
G/H

`A(g) dµR +
∫
G/H

∆G(g)−1`A(g) dµR

Note that the above quantity can be written as

(∫
G/H

`A(g) dµR

∫
G/H

∆G(g)`A(g) dµR +

∫
G/H

∆G(g)−1`A(g) dµR

∫
G/H

∆G(g)`A(g) dµR

(14)

+

∫
G/H

`A(g) dµR

∫
G/H

∆G(g)2`A(g) dµR +

∫
G/H

`A(g) dµR

∫
G/H

∆G(g)`A(g) dµR

)
·
(∫

G/H

`A(g) dµR

∫
G/H

∆G(g)`A(g) dµR +

∫
G/H

∆G(g)−1`A(g) dµR

∫
G/H

∆G(g)`A(g) dµR

+

∫
G/H

`A(g) dµR

∫
G/H

∆G(g)2`A(g) dµR +

∫
G/H

∆G(g)−1`A(g) dµR

∫
G/H

∆G(g)2`A(g) dµR

)−1

Using Hölder’s inequality again, we have∫
G/H

∆G(g)`A(g) dµR

∫
G/H

`A(g) dµR

≤
(∫

G/H

∆G(g)2`A(g) dµR

) 2
3
(∫

G/H

∆G(g)−1`A(g) dµR

) 1
3

(15)

·
(∫

G/H

∆G(g)2`A(g) dµR

) 1
3
(∫

G/H

∆G(g)−1`A(g) dµR

) 2
3

=

∫
G/H

∆G(g)2`A(g) dµR

∫
G/H

∆G(g)−1`A(g) dµR.

By applying (15) to the second term of the second line of (14), we conclude that

(16)

(
νG(A)

νG(A2)

) 1
2

+

(
µG(A)

µG(A2)

) 1
2

≤ 1.
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When the equality holds in (16), equalities hold in all the inequalities in the above
estimates. In particular, equality holds in (15) implies that ∆G(g) is a constant
for almost all g ∈ supp(`A). Since G is connected and nonunimodular, ker ∆G has
measure 0, this would imply that A has measure 0, and hence contradicts the fact
that A has positive measure. �

7. Proof of the main theorems

Our first theorem is the asymmetric version of Theorem 1.1:

Theorem 7.1. Let G be a connected noncompact locally compact group, µ is a left
Haar measure, and ν is a right Haar measure on G. Suppose A,B are compact
subsets of G of positive measures, and

(17) d(A,B−1) < logK,

where d is the nonunimodular Ruzsa distance defined in (4). Then there is a con-
tinuous surjective group homomorphism χ : G → L with compact kernel, where L
is a connected Lie group of dimension at most blogK/2c(1 + blogK/2c)/2, and an
open 64K12-approximate group X of G′, and A can be covered by at most 33K12

left translations of χ−1(X), B can be covered by at most 33K12 right translations
of χ−1(X). Moreover, if A = B and G is unimodular, with A′ = χ(A), we have
µL((A′)2) ≤ 64K3µL(A′).

Proof. As d(A,B−1) < logK, we have(
νG(A)

νG(AB)

) 2
log K

+

(
µG(B)

µG(AB)

) 2
log K

≥
(
K

νG(A)µG(B)

νG(AB)µG(AB)

) 1
log K

≥ 1,

which implies that BM(G) ≤ blogK/2c. Hence by Theorem 3.9, there is a contin-
uous surjective group homomorphsim χ : G → L with compact kernel, and L is a
connected Lie group satisfying

dim(L) ≤ blogK/2c(1 + blogK/2c)
2

.

By Theorem 4.7, there is a 64K12 open approximate group H of G, such that
A ⊆ ΩH and B ⊆ HΩ for some finite set Ω of cardinality at most 33K12. Let
X = χ(H). It is easy to see that X is the desired 64K12-approximate group. When
A = B the desired conclusion follows from Proposition 5.4. �

Next, we prove the nearly minimal measure expansions result:

Proof of Theorem 1.3. Using Theorem 3.12, we know that G is unimodular, and
moreover, there is a surjective continuous group homomorphism χ : G → R with
compact kernel. We first consider the case when µG(AB) = µG(A) + µG(B). By
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Theorem 5.1, there are compact sets X, Y ⊆ R with µR(X + Y ) = µR(X) + µR(Y ),
such that

µG(A) = µR(X), µG(B) = µR(Y ),

and A ⊆ χ−1(X), B ⊆ χ−1(Y ). By Fact 2.5, there are compact intervals I, J ⊆ R,
such that X = I and Y = J . Hence A ⊆ χ−1(I) and B ⊆ χ−1(J), this proves
statement (ii).

Now we prove statement (i). By Theorem 5.3, there are compact sets X, Y ⊆ R,
with

µG(A4χ−1(X)) ≤ 3dG(A,B), µG(B4χ−1(Y )) ≤ 3dG(A,B),

and
dR(X, Y ) ≤ 7dG(A,B).

Assume that dG(A,B) < 1/20 min{µG(A), µG(B)}, then we get

dR(X, Y ) <
1

2
min{µG(A), µG(B)} ≤ min{µR(X), µR(Y )}.

Applying Fact 2.5, we find intervals I ′′, J ′′ ⊆ R with X ⊆ I ′′ and Y ⊆ J ′′ such that

µR(I ′′) ≤ µR(X + Y )− µR(Y ) and µR(J ′′) ≤ µR(X + Y )− µR(X).

In particular, we can choose subintervals I ′ ⊆ I ′′ and J ′ ⊆ J ′′ with µR(I ′) = µR(X),
µR(J ′) = µR(Y ), and

µR(I ′4X) ≤ dR(X, Y ) µR(J ′4Y ) ≤ dR(X, Y ).

For any element g ∈ A\χ−1(I ′), assume that the Euclidean distance between χ(g)
and I ′ in R is strictly greater than 50dG(A,B). We then have

µR(χ(g)χ(B) \ I ′χ(B)) ≥ 50dG(A,B)− µR(J \ χ(B)) ≥ 40dG(A,B).

This implies that µG(gB \ χ−1(I ′)χ−1(J ′)) ≥ 30dG(A,B). Therefore,

µG(AB) ≥ µG
(
(χ−1(I ′) ∩ A)(χ−1(J ′) ∩B)

)
+ µG(gB \ χ−1(I ′)χ−1(J ′))

≥ µG(A) + µG(B)− 20dG(A,B) + 30dG(A,B),

and this is a contradiction. Thus there are intervals I ⊇ I ′, J ⊇ J ′ in R, such that

max{µR(I)− µR(I ′), µR(J)− µR(J ′)} < 100dG(A,B),

and A ⊆ χ−1(I), B ⊆ χ−1(J). �

Before state the next result, we first introduce the following definition.

Definition 7.2 (Interval progressions). We say a compact set X is an interval pro-
gression on G if there is a surjective continuous group homomorphism χ : G → R
with compact kernel, and X = χ−1(I + P ), where I is a compact interval, and P is
a generalized arithmetic progression.
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Theorem 7.3 (Measure expansions at most 4 in noncompact groups). Let G be a
connected noncompact locally compact group, µG a left Haar measure, and νG a right
Haar measure on G. Suppose A is a compact subset of G of positive measure, and

(18)

(
νG(A)

νG(A2)

) 1
2

+

(
µG(A)

µG(A2)

) 1
2

≥ 1,

Then G is unimodular, and one of the followings happens:

(i) There is a continuous surjective group homomorphism χ : G→ R with compact
kernel.
(a) If µG(A)/20 ≤ dG(A,A) ≤ 2µG(A), A is covered by an interval progression

χ−1(I + P ), where dimP = O(1) and µR(I + P ) = O(1)µG(A).
(b) If 0 < dG(A,A) < µ(A)/20, then there is a compact interval I ⊆ R, such

that A ⊆ χ−1(I), and

µG(χ−1(I))− µG(A) < 100dG(A,A).

(c) If µG(A2) = 2µG(A), then there is a compact interval I ⊆ R, such that
A = χ−1(I).

(ii) The equality holds in (18), and there is a continuous surjective group homo-
morphism χ : G → H with compact kernel, where H is either R2, or R2 o T,

or PSL2(R), or S̃L2(R). Moreover, χ(A) satisfies

µH(χ(A)2) = 4µH(χ(A))

where µH is a left Haar measure on H.

Proof. Inequality (18) implies that BM(G) ≤ 2. By Fact 3.5, we have hdim(G) ≤
ndim(G)/3. As a result, either BM(G) = 1, or BM(G) = 2. By Theorem 3.12, there
is a continuous surjective group homomorphism mapping G to a Lie group N with

compact kernel, where N can only be R, R2, R2 o T, PSL2(R), S̃L2(R), and the
ax+ b group.

We first consider the case when BM(G) = 1. Let χ : G → R be a continuous
surjective group homomorphism with compact kernel, and let X = χ(A). Suppose
that

dG(A,A) <
1

20
µG(A).

Then (i) (b) and (c) follow from Theorem 1.3. Let us now consider the case when
dG(A,A) ≥ µG(A)/20. By Proposition 5.4, µR(X+X) ≤ KµR(X) for some K ≤ 217.
The structural result on X follows from the fact that there are arbitrarily dense
subgroups of R isomorphic to Z. Then one can approximate any open set by a set of
the form Y + I where Y is contained in some such subgroup and I is a small interval
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in R. The structure of Y comes from the Freiman theorem. More precisely, let I(ε)
be the interval [−ε/2, ε/2]. Then there is some ε > 0 such that

µR(X +X + I(ε)) ≤ 2µR(X +X) ≤ 218µR(X)

from the fact that µR(X + X) =
⋂
ε→0 µR(X + X + I(ε)). We now approximate X

by a dense lattice as follows: we define

X = X + I(ε/2) ∩ ε

10
Z.

Then we have X ⊆ X + I(ε) and

X + X + I(ε/100) ⊆ X +X + I(ε).

Hence we have

|X + X| ε
100
≤ µR(X +X + I(ε)) ≤ 218µR(X) ≤ |X |218ε,

and hence |X +X| ≤ 225|X |. By Freiman’s theorem, X is contained in a generalized
arithmetic progression P and |P | = O(1)|X |. Therefore, we have X ⊆ P + I(ε).
This proves (i) (a). We remark that the argument is previously used by Tao in [24,
Proposition 7.1].

Finally we assume that BM(G) = 2. Proposition 6.1 implies that G is unimod-
ular. Hence N cannot be the ax + b group. The desired conclusion follows from
Theorem 5.1. This proves (ii). �
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