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摘 要

在 2014年时，Bang证明了，对一个直径大于等于 3，顶点的度大于等于 3，围长
g 大于 3并且满足 g ≡ 3 (mod 4)的距离正则图，当 k 足够大 (仅与围长 g 有关)
时，存在一个常数 γ(g) ∈ (−1,−0.64)使得 Γ满足 θmin ≥ γ(g)k。在本文中，我
们取 γ = −D−1

D
。当 D = 3, 4, 5时，我们确定了所有直径为 D，度数为 k，并且

最小特征值小于等于 −D−1
D

k的非二部的距离正则图。在第二章里，我们简单介
绍了一些必要的背景知识。在第三章中，我们证明了本文的主要定理。

关键词： 距离正则图，最小特征值，奇围长
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ABSTRACT

In 2014, Bang showed that ifΓ is a distance­regular graphwith diameterD ≥ 3, valency
k ≥ 3 and girth g > 3, satisfying g ≡ 3 (mod 4), if k is large enough (depending only
on g), then there exists γ(g) ∈ (−1,−0.64) such that the smallest eigenvalue of Γ
satisfies θmin ≥ γ(g)k. In this paper, we fix an γ = −D−1

D
and try to determine all non­

bipartite distance­regular graphs with diameter D = 3, 4, 5 with smallest eigenvalues
θmin ≤ γk. In Chapter 2, we give some background in graph theory. In Chapter 3, we
proof the main theorem.

Keywords: Distance­regular graph, smallest eigenvalue, odd girth
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Chapter 1 Introduction

Distance­regular graphs are graphs having lots of combinatorial symmetry, that means
that given an arbitrary ordered pair of vertices u, v with d(u, v) = h, the number of ver­
tices that are at distance i from u and distance j from v is a constant. It does not depend
on the chosen pair u, v, only depends on h, i and j. Biggs [11] introduced distance­
regular graphs in 1974, by observing several combinatorial and algebraic properties of
distance­transitive graphs were holding for this wider class of graphs. Distance­regular
graphs have applications in several fields, for example, Hamming graphs and Johnson
graphs link to coding theory and design theory, respectively. There are many more
interesting links to other fields, such as finite group theory, finite geometry, represen­
tation theory, and orthogonal polynomials. In graph theory, distance­regular graphs
are always used as test instances for problems for general graphs or other combinato­
rial structures. Distance­regular graphs also have applications in quantum information
theory, diffusion models, networks, and even finance.

The spectrum of a distance­regular graph contains quite some information about the
graph, it has many useful applications. In this paper, we focus on the spectrum of
distance­regular graphs.

Bang [1] showed that if Γ is a distance­regular graph having diameter D ≥ 3, valency
k ≥ 3 and girth g > 3 satisfying g ≡ 3 (mod 4), when k is not too small (depending only
on g), there exists γ(g) ∈ (−1,−0.64) such that the smallest eigenvalue of Γ satisfies
θmin ≥ γ(g)k. In this thesis, we fix an γ = −D−1

D
and try to determine all non­bipartite

distance­regular graphs with diameter D = 3, 4, 5 and smallest eigenvalues θmin ≤ γk.
The main result in the thesis is contained in an ongoing project [12].

Theorem 1.0.1. Let Γ be a non­bipartite distance­regular graph with valency k, diam­
eter D and smallest eigenvalue θmin ≤ −D−1

D
k.

1. If D = 3, then Γ is one of the following:
(a) the 7­gon with intersection array {2, 1, 1; 1, 1, 1};
(b) the Odd graph O4 with intersection array {4, 3, 3; 1, 1, 2};
(c) the folded 7­cube with intersection array {7, 6, 5; 1, 2, 3}.

2. If D = 4, then Γ is one of the following:
(a) the Coxeter graph with intersection array {3, 2, 2, 1; 1, 1, 1, 2};

1
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(b) the 9­gon with intersection array {2, 1, 1, 1; 1, 1, 1, 1};
(c) the Odd graph O5 with intersection array {5, 4, 4, 3; 1, 1, 2, 2};
(d) the folded 9­cube with intersection array {9, 8, 7, 6; 1, 2, 3, 4}.

3. If D = 5, then Γ is one of the following:
(a) the 11­gon with intersection array {2, 1, 1, 1, 1; 1, 1, 1, 1, 1};
(b) the Odd graph O6 with intersection array {6, 5, 5, 4, 4; 1, 1, 2, 2, 3};
(c) the folded 11­cube with intersection array {11, 10, 9, 8, 7; 1, 2, 3, 4, 5}.

This paper is organized as follows: In Chapter 2, we give the basic definitions and
concepts in graph theory, including basic properties of distance­regular graphs and the
matrix theory. In Chapter 3, we give the proof of the theorem above.

2
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Chapter 2 Preliminaries

2.1 Graphs

All the graphs considered in this paper are finite, undirected and simple. A graph is
a pair Γ = (V,E) consisting of a vertex set V and an edge set E, referred to as the
edge set of Γ, where an edge is an unordered pair of distinct vertices of Γ. We usually
use xy to denote an edge, and we say that x and y are adjacent or y is a neighbor of
x, use the notation x ∼ y. A 2­subset of V not in E is called a nonedge of Γ, and
the complement of Γ, often denoted Γ̄, is the graph with vertex set V whose edges
are all the nonedges of Γ. The distance in the graph between two vertices x and y is
denoted by d(x, y) = dΓ(x, y), and is given by the length of the shortest path between
x and y in Γ. The diameter of the graph is D = D(Γ) = maxx,y∈V d(x, y). The set of
vertices at distance i from a given vertex x ∈ V is denoted by Γi(x), for i = 0, 1, . . . , D,
and let Γ(x) = Γ1(x) for the convenience. A path of length p from x to y in a graph
is a sequence of p + 1 distinct vertices starting with x and ending with y such that
consecutive vertices are adjacent. If there exist a path between any two vertices in Γ,
we say the graph Γ is connected, otherwise disconnected. A walk of length t in Γ is
a sequence of vertices v0 ∼ v1 ∼ · · · ∼ vt. Note that the important difference between
walk and path is that a walk is permitted to use vertices more than once.

A graph Γ is called complete or clique when any two of its vertices are adjacent. The
complete graph on n vertices is denoted byKn. A coclique is a graph in which no two
vertices are adjacent.The valency or degree k(x) of a vertex x is the cardinality of the
neighbors of x. In particular, Γ is called regular with valency k if k = |Γ(x)| holds for
all vertices x ∈ V (Γ).

Two graphs G and H are equal or isomorphic if there is a bijection φ from V (G) to
V (H), such that x ∼ y in G if and only of φ(x) ∼ φ(y) in H . A subgraph of a graph
G is a graph H , where V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (G) = V (H), we call
H a spanning subgraph ofG. A subgraphH ofG is an induced subgraph if any two
vertices of V (H) are adjacent in H if and only if they are adjacent in G. A cycle is a
connected graph and every vertex has exactly two neighbors. A cycle in a graph refers
to an induced subgraph of Γ that is a cycle.

The girth of Γ, denoted by g = g(Γ), is the length of the shortest cycle in Γ. The
odd girth of Γ is the length of the shortest odd cycle in Γ. A subgraphH of Γ is called

3
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Figure 2.1 A spanning subgraph and an induced subgraph of a graph

isometric if dΓ(x, y) = dH(x, y) for all x, y ∈ V (H). Note that an isometric subgraph
is always induced. Let H be an induced subgraph of Γ, the width of H , denoted by
w = w(H), is w(H) = max{dΓ(x, y) | x, y ∈ V (H)}. Given a vertex x ∈ V (Γ), the
local graph ∆(x) of x is the induced subgraph on the vertex set Γ(x).

2.2 Distance­Regular Graphs

2.2.1 Definitions and Properties

For any two vertices u, v at distance i, we consider the numbers ci(u, v) = |Γi−1(u) ∩
Γ(v)|, ai(u, v) = |Γi(u) ∩ Γ(v)| and bi(u, v) = |Γi+1(u) ∩ Γ(v)|. A connected graph
Γ with diameter D is called distance­regular if ai, bi and ci are constants for i =

0, 1, 2, . . . , D, that means, ai(u, v), bi(u, v) and ci(u, v) depend only on i = dΓ(u, v) not
on the choice of vertices (u, v) with d(u, v) = i. We call ai, bi and ci the intersection
numbers. Set c0 = bD = 0, obviously we have a0 = 0 and c1 = 1. It follows that Γ is a
regular graph with valency k = b0 and that ai+bi+ci = k for all i = 0, 1, . . . , D. Since
ai can be expressed in terms of the others, the intersection array of a distance­regular
graph with diameter D is the array {b0, b1, . . . , bD−1; c1, c2, . . . , cD}. Note that every
vertex has a constant number of vertices ki at given distance i, that is, ki = |Γi(x)| for
all x ∈ V . Counting the number of edges between Γi(x) and Γi+1(x) in two ways, we
have k0 = 1 and ki+1 = biki/ci+1 for all i = 0, 1, . . . , D − 1. The number of vertices
now follows as |V | = k0 + k1 + · · ·+ kD. In particularly, a distance­regular graph with
diameter D = 2 is strongly­regular with parameters (v, k, a1, c2).

Figure 2.2 A distance­regular graph

A connected graph Γ with diameterD ≥ t for a positive integer t is called a t­partially

4
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diatance­regular graph if there exist intersection numbers ai, bi, ci for all i =≤ t. In
[10], Fiol and Garriga introduced t­walk regular graphs as a generalization of distance­
regular graphs. For an integer t ∈ (0, D], Γ with diameterD is called a t­walk regular

graph if for any vertices x, y ∈ V (Γ) with dΓ(x, y) ≤ t, the number of walks of any
given length between x and y only depends on dΓ(x, y). In [7, Proposition 3.15] we see
that a t­walk regular graph is a t­partially distance­regular graph with intersection num­
bers b0, b1, . . . , bt, c1, c2, . . . , ct. In particularly, a distance­regular graph with diameter
D is D­walk regular.

2.2.2 Examples

The complete graphs. The complete graphsKv is a graph where all vertices are adjacent
to each other. Obviously they are distance­regular graph with diameter D = 1 with
intersection array {v − 1; 1}.

The polygons. The polygons v­gon are the distance­regular graphs with diameter D =

[v−1
2
] and valency 2, where [·] is Gaussian function. They have intersection array {2, 1, 1,

. . . , 1; 1, 1, . . . , 1} if v is odd, and {2, 1, . . . , 1; 1, . . . , 1, 2} if v is even.

Figure 2.3 Polygon

The Odd graphs. For an integer t ≥ 2, the vertices of the Odd graph Ot are the (t− 1)­
subsets of a set of size 2t−1. Two vertices are adjacent if the corresponding subsets are
disjoint. The Odd graph Ot is distance­regular with diameter t− 1. For t = 2l− 1, the
intersection array is {k, k − 1, k − 1, . . . , l + 1, l + 1, l; 1, 1, 2, 2, . . . , l− 1, l− 1}, and
for t = 2l, the intersection array is {k, k − 1, k − 1, . . . , l + 1, l + 1; 1, 1, 2, 2, . . . , l −
1, l − 1, l}. Obviously, in the Odd graphs, the intersection numbers ai are zero for all
i = 0, 1, . . . , D − 1, but aD = l. One of the famous examples of Odd graph is the
Peterson graph O3.

Figure 2.4 The Peterson graph

The folded cubes. The folded n­cube is a partition graph, it can be described as that
the graph whose vertices are the partitions of an n­set into two subsets. Two partitions

5
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being adjacent when their common refinement contains a set of size one. For n ≥ 3,
the intersection array is given by diameter D = [n/2], and the intersection numbers
bj = n − j and cj = j. If n is even, then cD = n. The eigenvalues and multiplicities
are θj = n− 4j,m(θj) =

(
n
2j

)
.

2.3 Matrix Theory

The adjacency matrix A of a graph Γ is the v × v symmetric matrix indexed by the
vertices of Γ, whose entries aγδ are given by aγδ = 1 if γ ∼ δ, and aγδ = 0 other­
wise. Since A is real and symmetric, its eigenvalues are real numbers, they are called
the eigenvalue of Γ. If Γ is regular of valency k, its adjacency matrix A satisfies the
equation AJ = kJ and A1 = k1. In particular, k is an eigenvalue of Γ. In [11, Chapter
8.6], we also know that the smallest eigenvalue of Γ is at least −k, and the eigenvalue
of the induced subgraph of Γ is controlled by the eigenvalue of Γ.

Lemma 2.3.1. Let Y be an induced subgraph of X. Then

θmin(X) ≤ θmin(Y ) ≤ θmax(Y ) ≤ θmax(X)

The adjacency algebra of Γ, denoted by A = A(Γ) and A = R[A]. In [3, Lemma 2.5],
we see

Lemma 2.3.2. The number of walks of length l in Γ, joining vi to vj , is the entry in
position (i, j) of the matrix Al.

Using this, we can see the relation between the number of distinct eigenvalues and
the diameter of the graph. Assume first that Γ has distinct eigenvalues θ0, θ1, . . . , θd.
Because theminimal polynomial ofA has degree d+1, it is clear that {I, A,A2, . . . , Ad}
is a basis of A, hence dim A = d+ 1.

Now we consider the case that Γ is distance­regular. The adjacency matrix Ai of Γi is
called the distance­i matrix of Γ, for i = 0, 1, . . . , D. By Lemma 2.3.2, we obtain the
equation

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 (2.1)

for i = 0, 1, . . . , D. Set b−1A−1 = cD+1AD+1 = 0, then there exist polynomials pi of
degree i such that Ai = pi(A). Hence {I = A0, A = A1, A2, . . . , AD} is also a basis of
A. We may conclude the following:

Proposition 2.3.1. Let Γ be a distance­regular graph with diameterD. Then dim A =

D + 1, and Γ has exactly D + 1 distinct eigenvalues.

6
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In [8, Proposition 2.7] we can see that theD+1 distinct eigenvalues of Γwith diameter
D are the eigenvalues of the intersection matrix:

L =



0 b0

c1 a1 b1 0

c2 · ·
· · ·

0 · · bD−1

cD aD


Let θ be an eigenvalue ofLwith corresponding right eigenvectoru = (u0, u1, . . . , uD)

⊤,
then we have Lu = θu, where u0 = 1, u1 = θ/k, and

ciui−1 + aiui + biui+1 = θui (2.2)

for i = 1, 2, . . . , D. The sequence (ui)
D
i=0 is called the standard sequence of Γ for the

eigenvalue θ.

For an eigenvalue θ of Γ, the multiplicity of θ is denoted by m(θ) = mA(θ). Let
{v1, v2, . . . , vm} be a set of orthonormal eigenvectors of A corresponding to θ, then let
W be a matrix whose columns are vi, where 1 ≤ i ≤ m. The matrix Eθ = WW T

is called a minimal idempotent corresponding to θ. For i = 0, 1, . . . , D, we define
the matrix Ei = ΠD

j=0,j ̸=i
A−θjI

θi−θj
, then Eθ is one of the matrices Ei. We shall see the

set {E0, E1, . . . , ED} forms another basis of A. Indeed, let v be an eigenvector of θj ,
then Eiv = δijv. That means that {E0, E1, . . . , ED} forms a linearly independent set
of matrices in A. Using this, by [8, Theorem 2.8], we get the relation between the
multiplicities of the eigenvalues of Γ and the intersection numbers. This is known as
Biggs’ Formula.

Theorem 2.3.1. (Biggs’ Formula) Let Γ be a distance­regular graph with diameter D
and v vertices. Let θ be an eigenvalue of Γ and (ui)

D
i=0 be the standard sequence with

respect to θ. Then the multiplicity m(θ) satisfies

m(θ) =
v∑D

i=0 kiu
2
i

(2.3)

A clique C with 1 − k/θmin vertices is called a Delsarte clique of Γ. The following
result was first shown by Delsarte [9] for strongly­regular graphs and then extended by
Godsil to the class of distance­regular graphs.

Theorem 2.3.2. (Delsarte­Godsil Bound) Let Γ be a distance­regular graph with va­
lency k ≥ 2, diameter D ≥ 2 and smallest eigenvalue θmin. Let C ⊆ V (Γ) be a clique

7
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with c vertices. Then
c ≤ 1 +

k

−θmin
(2.4)

with equality if and only if C is a completely regular code with covering radiusD − 1.

8
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Chapter 3 Proof of the Main Theorem

3.1 Distance­regular graphs with odd girth 7 and 9

Assume Γ is a distance­regular graph with diameter D and odd girth g = 2t + 1. Let
(ui)

D
i=0 be the standard sequence for the smallest eigenvalue θmin. Let∆ be a g­gon and

let η be an eigenvalue of∆. Because∆ is an isometric subgraph of Γ, by [2, Proposition
3.1], we have

t∑
i=0

ki(∆)ui ≥ 0 (3.1)

t∑
i=0

pi(η)ui ≥ 0 (3.2)

By equation 2.1, we see that pi(x) are the polynomials defined as the following:

p0(x) = 1

p1(x) = x

p2(x) = x2 − 2

pi(x) = xpi−1(x)− pi−2(x) (3 ≤ i ≤ t)

When g = 5, by Equation 3.1, u0 + 2u1 + 2u2 + 2u3 ≥ 0. Let ε = θmin/k, applying
Equation 2.2, we have

1 + 2ε+ 2
ε2k − 1

k − 1
+ 2

ε(ε2k2 − (1 + c2)k + c2)

(k − 1)(k − c2)
≥ 0 (3.3)

When g = 9, we can easily get that

Lemma 3.1.1. Let Γ be a distance­regular graph with diameter D ≥ 2, valency k ≥ 2

and odd girth 9. Let θmin = εk be the smallest eigenvalue of Γ. If ε < −0.755, then k

is less than the largest root of the polynomial

(ε4−2ε3+ε2+ε+1)k3+(2ε3−5ε2+3ε+1)k2+(10ε2−8ε−2)k−1+ε = 0 (3.4)

Proof. When g = 9, by Equation 3.2, take η = −1, we have u0−u1−u2+2u3−u4 ≥ 0.
Since ε < −0.755 < −3

4
, by [13, Proposition 5.1], consider the inducedK2,c2 , we have

that 4c2
2+c2

≤ 1− k−1
θmin−1

< 7
3
, c2 ≤ 2. Also, the coefficient of k3 is negative, then we can

estimate u0−u1−u2+2u3−u4 by c2 ≤ 2 and c3 ∈ [2, k], and easily get the result.

9
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3.2 D = 3, 4

The following proposition is a direct result of [13, Theorem 1.2].

Proposition 3.2.1. Let Γ be a non­bipartite distance­regular graph with valency k, di­
ameter D = 3 and smallest eigenvalue θmin ≤ −2

3
k. Then Γ is one of the following:

(a) the 7­gon with intersection array {2, 1, 1; 1, 1, 1};
(b) the Odd graph O4 with intersection array {4, 3, 3; 1, 1, 2};
(c) the folded 7­cube with intersection array {7, 6, 5; 1, 2, 3}.

Then we consider the case D = 4.

Proposition 3.2.2. Let Γ be a non­bipartite distance­regular graph with valency k, di­
ameter D = 4 and smallest eigenvalue θmin ≤ −3

4
k. Then Γ is one of the following:

(a) the Coxeter graph with intersection array {3, 2, 2, 1; 1, 1, 1, 2};
(b) the 9­gon with intersection array {2, 1, 1, 1; 1, 1, 1, 1};
(c) the Odd graph O5 with intersection array {5, 4, 4, 3; 1, 1, 2, 2};
(d) the folded 9­cube with intersection array {9, 8, 7, 6; 1, 2, 3, 4}.

Proof. By [13, Proposition 5.1], consider the induced K2,c2 , we have that 4c2
2+c2

≤ 1 −
k−1

θmin−1
< 7

3
, c2 ≤ 2. By Theorem 2.3.2, the size of the maximal clique is at most

1− k
θmin

< 3, that means a1 = 0.

Assume that a2 ̸= 0, Γ must contain an induced 5­gon. Then by [2, Corollary 3.4], as
−1

2
+ 1

2

√
5 is the second large eigenvalue of the pentagon, θmin ≥ −1 − 2(k−1)

1+
√
5
. Since

θmin ≤ −3
4
k, we see k ≤ 2.

Hence we have a1 = a2 = 0. Assume a3 ̸= 0, Γ must contain an induced 7­gon. By
Equation 3.3, applying ε = −3

4
and c2 = 1 or 2. Therefore,

− 1

2
+

9
8
k − 2

k − 1
−

3
2
( 9
16
k2 − (1 + c2)k + c2)

(k − 1)(k − c2)
≥ 0 (3.5)

Then we obtain {
k ≤ 4 c2 = 1

k ≤ 8 c2 = 2

By the method in [5, Proposition 4.16], we check all the feasible intersection arrays with
c2 = 1 or 2, a1 = a2 = 0, a3 ̸= 0 and k ≤ 8, we see that is the Coxeter graph by [5,
Theorem 12.3.1].

Nowwe consider the case a1 = a2 = a3 = 0. Assume that k ≥ 38, then |u2| ≥
9
16

k−1

k−1
≥

10
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0.5506. Consider the intersection matrix

L =


0 k 0 0 0
1 0 k − 1 0 0
0 c2 0 k − c2 0
0 0 c3 0 k − c3
0 0 0 c4 k − c4


we have

k2 + θ2min ≤ tr(L2)

≤ k2 + 6k + c24 + 2c3(k − c4)

≤ k2 + 6k + c4(2k − c4).

This implies that c4 ≥ 0.2283k. As

|u3| = |θu2 − c2u1

k − c2
|

≥ |θu2| − c2
k − c2

≥ 0.3803,

Now by Theorem 2.3.1, we havem = v∑4
i=0 kiu

2
i

, where v is the number of vertices in Γ.
Note that, for positive real number a, b, c, d, if a/c ≥ b/d, then

a

c
≥ a+ b

c+ d
≥ b

d

holds. Using this, we have that

m ≤ k3 + k4
k3u2

3

≤
1 + k

c4

u2
3

< 38

By [2, Proposition 3.3], we see k ≤ m ≤ 37.

Then we check all the feasible intersection arrays with c2 = 1 or 2, a1 = a2 = a3 = 0,
and k ≤ 37, we get the rest three graphs.

3.3 D = 5

Proposition 3.3.1. Let Γ be a non­bipartite distance­regular graph with valency k, di­
ameter D = 5 and smallest eigenvalue θmin ≤ −4

5
k. Then Γ is one of the following:

(a) the 11­gon with intersection array {2, 1, 1, 1, 1; 1, 1, 1, 1, 1};
(b) the Odd graph O6 with intersection array {6, 5, 5, 4, 4; 1, 1, 2, 2, 3};
(c) the folded 11­cube with intersection array {11, 10, 9, 8, 7; 1, 2, 3, 4, 5}.

11



中国科学技术大学学士学位论文

Proof. Similarly, by [13, Proposition 5.1], we have c2 ≤ 2, and by Theorem 2.3.2, we
have a1 = 0. We may assume k ≥ 5, otherwise Γ is the 11­gon by [4] and [6, Theorem
1.1].

If a2 ̸= 0, Γ must contain an induced 5­gon. For similar reasons, θmin ≥ −1 − 2(k−1)

1+
√
5
,

and k ≤ 2.

Hence we have a1 = a2 = 0. If a3 ̸= 0, Γ must contain an induced 7­gon. Then by
Equation 3.3, we have {

k ≤ 3 c2 = 1

k ≤ 5 c2 = 2

For second case, when c2 = 2, by [5, Theorem 1.13.2], Γ is the 5­cube, which is bipar­
tite.

Then we consider the case a1 = a2 = a3 = 0. Assume a4 ̸= 0, the odd girth of Γ must
be 9. Then by Lemma 3.1.1, let ε = −4

5
, we get k ≤ 18. Then we check all the feasible

intersection arrays with a1 = a2 = a3 = 0, c2 = 1 or 2 and k ≤ 18, no such array
exists.

Now we consider the case a1 = a2 = a3 = a4 = 0. Assume that k ≥ 61. Also consider
the intersection matrix

L =


0 k 0 0 0 0
1 0 k − 1 0 0 0
0 c2 0 k − c2 0 0
0 0 c3 0 k − c3 0
0 0 0 c4 0 k − c4
0 0 0 0 c5 k − c5


we have

k2 + θ2min ≤ tr(L2)

≤ k2 + 6k + c25 + 2c4(2k − c5)

≤ k2 + 6k + 4c5k − c25

This implies that c5 ≥ 0.1403k. As

|u3| = |θmin(θ
2
min − (1 + c2)k + c2)

k(k − 1)(k − 2)
|

≥ 0.4904,

In this situation, we may assume that c4 = αk and c5 = βk. Then by Equation 2.2, we
have

u4 =
θminu3 − c4u2

k − c4

≥
4
5
|u3| − α

1− α

12
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Therefore,

m ≤ k3 + k4 + k5
k3u2

3 + k4u2
4

≤
1 + k

c4
(1 + k−c4

c5
)

u2
3 +

k
c4
u2
4

=
1 + 1

α
(1 + 1−α

β
)

u2
3 +

1
α
(

4
5
|u3|−α

1−α
)2

Then use the fact 0 < α ≤ β and 0.1403 ≤ β ≤ 1, we getm < 61. By [2, Proposition
3.3], we get k < 61, contradiction.

It follows that k ≤ 60. Then we check all feasible intersection arrays with a1 = a2 =

a3 = a4 = 0, c2 = 1 or 2, and θmin ≤ −4
5
k, the folded 11­cube and the odd graph O6

are the only possible ones.

This completes the proof.

Now Theorem 1.0.1 follows from Proposition 3.2.1, Proposition 3.2.2 and Proposition
3.3.1.

13
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