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ABSTRACT

In 2014, Bang showed that if I is a distance-regular graph with diameter D > 3, valency
k > 3 and girth g > 3, satisfying ¢ = 3 (mod 4), if k is large enough (depending only
on g), then there exists v(g) € (—1,—0.64) such that the smallest eigenvalue of I'
satisfies Oy > v(g)k. In this paper, we fix an v = —% and try to determine all non-
bipartite distance-regular graphs with diameter D = 3,4, 5 with smallest eigenvalues
Omin < vk. In Chapter 2, we give some background in graph theory. In Chapter 3, we

proof the main theorem.

Keywords: Distance-regular graph, smallest eigenvalue, odd girth
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Chapter 1 Introduction

Distance-regular graphs are graphs having lots of combinatorial symmetry, that means
that given an arbitrary ordered pair of vertices u, v with d(u, v) = h, the number of ver-
tices that are at distance ¢ from u and distance j from v is a constant. It does not depend
on the chosen pair u, v, only depends on h,7 and j. Biggs [11] introduced distance-
regular graphs in 1974, by observing several combinatorial and algebraic properties of
distance-transitive graphs were holding for this wider class of graphs. Distance-regular
graphs have applications in several fields, for example, Hamming graphs and Johnson
graphs link to coding theory and design theory, respectively. There are many more
interesting links to other fields, such as finite group theory, finite geometry, represen-
tation theory, and orthogonal polynomials. In graph theory, distance-regular graphs
are always used as test instances for problems for general graphs or other combinato-
rial structures. Distance-regular graphs also have applications in quantum information

theory, diffusion models, networks, and even finance.

The spectrum of a distance-regular graph contains quite some information about the
graph, it has many useful applications. In this paper, we focus on the spectrum of

distance-regular graphs.

Bang [1] showed that if I is a distance-regular graph having diameter D > 3, valency
k > 3 and girth g > 3 satisfying g = 3 (mod 4), when £ is not too small (depending only
on g), there exists 7(g) € (—1,—0.64) such that the smallest eigenvalue of I satisfies
Omin > 7(g)k. In this thesis, we fix an v = —2-1 and try to determine all non-bipartite
distance-regular graphs with diameter D = 3, 4, 5 and smallest eigenvalues 0, < k.

The main result in the thesis is contained in an ongoing project [12].

Theorem 1.0.1. Let I' be a non-bipartite distance-regular graph with valency k, diam-

eter D and smallest eigenvalue 0,;, < —%k.

1. If D = 3, then I is one of the following:

(a) the 7-gon with intersection array {2,1,1;1,1,1};

(b) the Odd graph O, with intersection array {4,3,3;1,1,2},
(c) the folded T-cube with intersection array {7,6,5; 1,2, 3}.

2. If D = 4, then I is one of the following:
(a) the Coxeter graph with intersection array {3,2,2,1;1,1,1,2};
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(b) the 9-gon with intersection array {2,1,1,1;1,1,1,1};
(c) the Odd graph Os with intersection array {5,4,4,3;1,1,2,2};
(d) the folded 9-cube with intersection array {9,8,7,6;1,2,3,4}.

3. If D =5, then I is one of the following:

(a) the 11-gon with intersection array {2,1,1,1,1;1,1,1,1,1};

(b) the Odd graph Og with intersection array {6,5,5,4,4;1,1,2,2,3};
(c) the folded 11-cube with intersection array {11,10,9,8,7;1,2,3,4,5}.

This paper is organized as follows: In Chapter 2, we give the basic definitions and
concepts in graph theory, including basic properties of distance-regular graphs and the

matrix theory. In Chapter 3, we give the proof of the theorem above.
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Chapter 2 Preliminaries

2.1 Graphs

All the graphs considered in this paper are finite, undirected and simple. A graph is
apair I' = (V| E) consisting of a vertex set V' and an edge set F, referred to as the
edge set of I', where an edge is an unordered pair of distinct vertices of I'. We usually
use xy to denote an edge, and we say that x and y are adjacent or y is a netghbor of
x, use the notation x ~ y. A 2-subset of V not in E is called a nonedge of I', and
the complement of ', often denoted T', is the graph with vertex set V' whose edges
are all the nonedges of I'. The distance in the graph between two vertices = and y is
denoted by d(z,y) = dr(z,y), and is given by the length of the shortest path between
x and y in I'. The diameter of the graph is D = D(I') = max, ey d(z,y). The set of
vertices at distance ¢ from a given vertex € V' is denoted by I';(z), fori = 0,1,..., D,
and let I'(x) = I'y(x) for the convenience. A path of length p from x to y in a graph
is a sequence of p + 1 distinct vertices starting with x and ending with y such that
consecutive vertices are adjacent. If there exist a path between any two vertices in I,
we say the graph I is connected, otherwise disconnected. A walk of length ¢ in I" is
a sequence of vertices vy ~ vy ~ --- ~ v;. Note that the important difference between

walk and path is that a walk is permitted to use vertices more than once.

A graph I' is called complete or clique when any two of its vertices are adjacent. The
complete graph on n vertices is denoted by K,,. A coclique is a graph in which no two
vertices are adjacent.The valency or degree k(x) of a vertex x is the cardinality of the
neighbors of x. In particular, I is called regular with valency k if £ = |T'(x)| holds for
all vertices z € V (I).

Two graphs G and H are equal or isomorphic if there is a bijection ¢ from V(G) to
V(H), such that x ~ y in G if and only of p(z) ~ ¢(y) in H. A subgraph of a graph
G isa graph H, where V(H) C V(G)and E(H) C E(G). f V(G) = V(H), we call
H a spanning subgraph of G. A subgraph H of GG is an induced subgraph if any two
vertices of V' (H) are adjacent in H if and only if they are adjacent in G. A cycle is a
connected graph and every vertex has exactly two neighbors. A cycle in a graph refers

to an induced subgraph of I that is a cycle.

The girth of T, denoted by g = ¢(I'), is the length of the shortest cycle in I'. The
odd girth of T is the length of the shortest odd cycle in I'. A subgraph H of I is called
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Figure 2.1 A spanning subgraph and an induced subgraph of a graph

isometricif dr(z,y) = dy(z,y) forall x,y € V(H). Note that an isometric subgraph
is always induced. Let H be an induced subgraph of I, the width of H, denoted by
w=w(H),is w(H) = max{dr(z,y) | z,y € V(H)}. Given a vertex x € V(I'), the
local graph A(z) of x is the induced subgraph on the vertex set I'(x).

2.2 Distance-Regular Graphs
2.2.1 Definitions and Properties

For any two vertices u, v at distance i, we consider the numbers ¢;(u,v) = |[;_1(u) N
L(v)|, ai(u,v) = |I';(u) N [(v)| and b;(u,v) = |I'ix1(u) N T'(v)]. A connected graph
I' with diameter D is called distance-regular if a;, b; and ¢; are constants for i =
0,1,2,..., D, thatmeans, a;(u, v), b;(u,v) and ¢;(u, v) depend only on ¢ = dr(u, v) not
on the choice of vertices (u, v) with d(u, v) = i. We call a;, b; and ¢; the intersection
numbers. Set co = bp = 0, obviously we have ag = 0 and ¢; = 1. It follows that ["is a
regular graph with valency k = by and that a; +b; +c¢; = k foralle = 0,1,..., D. Since
a; can be expressed in terms of the others, the intersection array of a distance-regular
graph with diameter D is the array {bo, b1,...,bp_1;¢1,C2,...,cp}. Note that every
vertex has a constant number of vertices k; at given distance i, that is, k; = |I';(x)| for
all x € V. Counting the number of edges between I';(z) and I';;1(x) in two ways, we
have ky = 1 and k; 11 = b;ik;/c;4q foralli = 0,1,..., D — 1. The number of vertices
now follows as |V'| = ko + k1 + - - - + kp. In particularly, a distance-regular graph with

diameter D = 2 is strongly-regular with parameters (v, k, a1, ¢2).

k 1 b1
ai

Cc2 ba Cp-1 bp_1 cD
az ap-1 ap

Figure 2.2 A distance-regular graph

A connected graph ' with diameter D > ¢ for a positive integer ¢ is called a t-partially

4
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diatance-regular graph if there exist intersection numbers a;, b;, ¢; forall : =< ¢. In
[10], Fiol and Garriga introduced ¢-walk regular graphs as a generalization of distance-
regular graphs. For an integer ¢ € (0, D], " with diameter D is called a t-walk regular
graph if for any vertices z,y € V(I') with dr(x,y) < t, the number of walks of any
given length between x and y only depends on dr-(z, y). In [7, Proposition 3.15] we see
that a t-walk regular graph is a ¢-partially distance-regular graph with intersection num-
bers by, by, ...,bs, c1,Co,. .., c. Inparticularly, a distance-regular graph with diameter

D is D-walk regular.
2.2.2 Examples

The complete graphs. The complete graphs K, is a graph where all vertices are adjacent
to each other. Obviously they are distance-regular graph with diameter D = 1 with

intersection array {v — 1;1}.

The polygons. The polygons v-gon are the distance-regular graphs with diameter D =
[%51] and valency 2, where [-] is Gaussian function. They have intersection array {2, 1, 1,
11,1 1 ifvisodd, and {2,1,...,1;1,...,1,2} if v is even.

Figure 2.3 Polygon

The Odd graphs. For an integer t > 2, the vertices of the Odd graph O; are the (¢t — 1)-
subsets of a set of size 2t — 1. Two vertices are adjacent if the corresponding subsets are
disjoint. The Odd graph O, is distance-regular with diameter ¢ — 1. For t = 2[ — 1, the
intersection array is {k,k — 1,k —1,... .1+ 1,1+ 1,1;1,1,2,2,...,1—1,1l — 1}, and
for t = 21, the intersection array is {k,k — 1,k —1,..., 1+ 1,0+ 1;1,1,2,2,... 1 —
1,1 — 1,1}. Obviously, in the Odd graphs, the intersection numbers a; are zero for all
1 =0,1,...,D — 1, but ap = [. One of the famous examples of Odd graph is the
Peterson graph Os.

Figure 2.4 The Peterson graph

The folded cubes. The folded n-cube is a partition graph, it can be described as that

the graph whose vertices are the partitions of an n-set into two subsets. Two partitions

5
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being adjacent when their common refinement contains a set of size one. For n > 3,
the intersection array is given by diameter D = [n/2], and the intersection numbers
bj =n — jand c; = j. If nis even, then cp = n. The eigenvalues and multiplicities
are 0; =n — 4j, m(6;) = ().

2j

2.3 Matrix Theory

The adjacency matriz A of a graph I' is the v X v symmetric matrix indexed by the
vertices of I', whose entries a4 are given by a,s = 1if v ~ ¢, and a,s = 0 other-
wise. Since A is real and symmetric, its eigenvalues are real numbers, they are called
the etgenvalue of I'. If ' is regular of valency k, its adjacency matrix A satisfies the
equation AJ = kJ and A1 = k1. In particular, £ is an eigenvalue of I'. In [11, Chapter
8.6], we also know that the smallest eigenvalue of I' is at least —k, and the eigenvalue

of the induced subgraph of I is controlled by the eigenvalue of I'.

Lemma 2.3.1. Let Y be an induced subgraph of X. Then

9min<X) S emin(Y) S 6max<Y) S 9max<X)

The adjacency algebra of ', denoted by A = A(I") and A = R[A]. In [3, Lemma 2.5],

W€ S€C

Lemma 2.3.2. The number of walks of length | in I, joining v; to v;, is the entry in
position (i, 7) of the matrix Al.

Using this, we can see the relation between the number of distinct eigenvalues and
the diameter of the graph. Assume first that [" has distinct eigenvalues 6y, 61, .. ., 6,.
Because the minimal polynomial of A has degree d+1, itis clear that {I, A, A%, ..., A%}
is a basis of A, hence dim A = d + 1.

Now we consider the case that I is distance-regular. The adjacency matrix A; of I'; is
called the distance-i matriz of ', fori = 0,1,..., D. By Lemma 2.3.2, we obtain the
equation

AA; = b 1A+ aiAi 4+ i1 A 2.1

fori =0,1,...,D. Setb_1A_| = ¢p1Apy1 = 0, then there exist polynomials p; of
degree i such that A; = p;(A). Hence {I = Ay, A = Ay, Ag, ..., Ap} is also a basis of
A. We may conclude the following:

Proposition 2.3.1. Let I be a distance-regular graph with diameter D. Then dim A =
D + 1, and I has exactly D + 1 distinct eigenvalues.
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In [8, Proposition 2.7] we can see that the D + 1 distinct eigenvalues of I' with diameter

D are the eigenvalues of the intersection matrix:

0 by
C1 bl 0
c
L= ?
0 bp—1
i ¢p  ap |
Let 0 be an eigenvalue of L with corresponding right eigenvectoru = (ug, u1, ..., up) ",

then we have Lu = fu, where ug = 1, u; = 0/k, and
Cili—1 + a;u; + biuiﬂ = Guz (22)

fori =1,2,...,D. The sequence (u;)2, is called the standard sequence of T for the

eigenvalue 6.

For an eigenvalue 6 of I, the multiplicity of 6 is denoted by m(0) = ma(f). Let
{v1,v9, ..., vy} be a set of orthonormal eigenvectors of A corresponding to 6, then let
W be a matrix whose columns are v;, where 1 < ¢ < m. The matrix £y = WW7T
is called a minimal idempotent corresponding to 6. Fori = 0,1,..., D, we define
the matrix E;, = Hf:()’#i’;i%egf,
set {Ey, E, ..., Ep} forms another basis of A. Indeed, let v be an eigenvector of 6,

then Fj is one of the matrices F;. We shall see the

then E;v = ¢;;v. That means that {Ey, £, ..., Ep} forms a linearly independent set
of matrices in A. Using this, by [8, Theorem 2.8], we get the relation between the
multiplicities of the eigenvalues of I" and the intersection numbers. This is known as

Biggs’ Formula.

Theorem 2.3.1. (Biggs’ Formula) Let I" be a distance-regular graph with diameter D
and v vertices. Let 0 be an eigenvalue of T and (u;)2., be the standard sequence with

respect to 0. Then the multiplicity m(6) satisfies

v

m() = —————
@) Zzp:okiu?

(2.3)

A clique C with 1 — k/0,,;, vertices is called a Delsarte clique of I'. The following
result was first shown by Delsarte [9] for strongly-regular graphs and then extended by

Godsil to the class of distance-regular graphs.

Theorem 2.3.2. (Delsarte-Godsil Bound) Let I" be a distance-regular graph with va-
lency k > 2, diameter D > 2 and smallest eigenvalue O;,. Let C C V(T') be a clique

7
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with c vertices. Then
c<1+

(2.4)

~ VUmin

with equality if and only if C' is a completely regular code with covering radius D — 1.
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Chapter 3 Proof of the Main Theorem

3.1 Distance-regular graphs with odd girth 7 and 9

Assume I is a distance-regular graph with diameter D and odd girth g = 2¢ + 1. Let
(u;)2, be the standard sequence for the smallest eigenvalue 6,;,. Let A be a g-gon and
let n be an eigenvalue of A. Because A is an isometric subgraph of I, by [2, Proposition

3.1], we have

> ki(A)u; >0 (3.1)
=0
> pin)ui >0 (32)
=0

By equation 2.1, we see that p;(z) are the polynomials defined as the following:

po(z) =1

pi(z) =x

pa(z) = 2% — 2

pi(r) = xpi1(v) —pia(z) (3<0<H)

When g = 5, by Equation 3.1, ug + 2uy + 2uy + 2uz > 0. Let & = O,n/k, applying

Equation 2.2, we have

2k —1 _e(e®k* — (1+ o)k + ¢2)
1+ 2 2 2 >0 33
e T T S =) © (3-3)

When g = 9, we can easily get that

Lemma 3.1.1. Let I" be a distance-regular graph with diameter D > 2, valency k > 2
and odd girth 9. Let O, = €k be the smallest eigenvalue of T. If ¢ < —0.755, then k

is less than the largest root of the polynomial
(e'" =28 +&® +e+1)k° +(28° —5e* +3e + 1)k* + (106 =8 —2)k —1+e = 0 (3.4)

Proof. When g = 9, by Equation 3.2, take n = —1, we have ug—u; —us+2uz—ug > 0.
Since ¢ < —0.755 < —%, by [13, Proposition 5.1], consider the induced K3 .,, we have

that 2‘%2 <1-— =L < I ¢y <2. Also, the coefficient of k? is negative, then we can

estimate ug — uy — us +2u3 —uy by co < 2and c3 € [2, k|, and easily get the result. [
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32 D=34

The following proposition is a direct result of [13, Theorem 1.2].

Proposition 3.2.1. Let [" be a non-bipartite distance-regular graph with valency k, di-
ameter D = 3 and smallest eigenvalue 0, < —%k‘. Then 1 is one of the following:
(a) the T-gon with intersection array {2,1,1;1,1,1};

(b) the Odd graph O4 with intersection array {4,3,3;1,1,2},

(c) the folded T-cube with intersection array {7,6,5; 1,2, 3}.

Then we consider the case D = 4.

Proposition 3.2.2. Let I" be a non-bipartite distance-regular graph with valency k, di-
ameter D = 4 and smallest eigenvalue 0., < —%k‘. Then 1 is one of the following:
(a) the Coxeter graph with intersection array {3,2,2,1;1,1,1,2};

(b) the 9-gon with intersection array {2,1,1,1;1,1,1,1};

(c) the Odd graph Os with intersection array {5,4,4,3;1,1,2,2};

(d) the folded 9-cube with intersection array {9,8,7,6;1,2,3,4}.

Proof. By [13, Proposition 5.1], consider the induced K .,, we have that 2%2 <1-

=S B ¢
G'min_l 3°
1 — ;£ < 3, that means a; = 0.

Gmin

co < 2. By Theorem 2.3.2, the size of the maximal clique is at most

Assume that a; # 0, ' must contain an induced 5-gon. Then by [2, Corollary 3.4], as
2(k—1)

R Since

—% + %\/5 is the second large eigenvalue of the pentagon, 0, > —1 —
Omin < —3k, we see k < 2.

Hence we have a; = as = 0. Assume ag # 0, [’ must contain an induced 7-gon. By
Equation 3.3, applying ¢ = —‘;—i and co = 1 or 2. Therefore,

1 k=2 3K —-(1+c)k+c)
_1 _ > 3.5
SR G-DE—c) =" (3-5)

k§4 02:1
k§8 02:2

By the method in [5, Proposition 4.16], we check all the feasible intersection arrays with

Then we obtain

co =1or2,a; =ay =0,a3 # 0and k < 8, we see that is the Coxeter graph by [5,
Theorem 12.3.1].

5o

k—1 >

Now we consider the case a; = ay = a3 = 0. Assume that &k > 38, then |uy| > 10— >

10
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0.5506. Consider the intersection matrix

0 k 0 0 0

1 0 k-1 0 0
L=10 ¢ 0 k—co 0

0 0 ¢ 0 k —cs

_0 0 0 Cy l{?—C4_

we have

B+ O < tr(L7)

< k? + 6k +c; + 2c3(k — cy)

S k‘Q + 6k + C4(2k’ - 04).
This implies that ¢, > 0.2283k. As
| | |9U2 — CU1
Ug| = | ————
3 k— Co
|6U2| — C9
- k — Co
> 0.3803,

Now by Theorem 2.3.1, we have m = —4%, where v is the number of vertices in I
=0 "1™
Note that, for positive real number a, b, ¢, d, if a/c > b/d, then

aa +0 S b
c c+d—d
holds. Using this, we have that
< ks + k4
- k3u§
1+ £
< —5+ <38
u3

By [2, Proposition 3.3], we see k < m < 37.

Then we check all the feasible intersection arrays with co = 1 or 2, a; = as = a3 = 0,
and k£ < 37, we get the rest three graphs. [

33 D=5

Proposition 3.3.1. Let I" be a non-bipartite distance-regular graph with valency k, di-
ameter D = 5 and smallest eigenvalue 0., < —%k‘. Then 1 is one of the following:
(a) the 11-gon with intersection array {2,1,1,1,1;1,1,1,1,1};

(b) the Odd graph Og with intersection array {6,5,5,4,4;1,1,2,2,3};

(c) the folded 11-cube with intersection array {11,10,9,8,7;1,2,3,4,5}.

11
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Proof. Similarly, by [13, Proposition 5.1], we have co < 2, and by Theorem 2.3.2, we
have a; = 0. We may assume k£ > 5, otherwise I is the 11-gon by [4] and [6, Theorem
1.1].

2(k—1)

If ay # 0, I must contain an induced 5-gon. For similar reasons, 0,,;, > —1 — e

and £ < 2.

Hence we have a; = as = 0. If ag3 # 0, I’ must contain an induced 7-gon. Then by

k <3 Co = 1

k <5 Co = 2
For second case, when ¢y = 2, by [5, Theorem 1.13.2], I is the 5-cube, which is bipar-
tite.

Equation 3.3, we have

Then we consider the case a; = ay = az = 0. Assume a4 # 0, the odd girth of " must
be 9. Then by Lemma 3.1.1, lete = —‘—é, we get k < 18. Then we check all the feasible
intersection arrays with a; = as = az = 0, co = 1 or 2 and k£ < 18, no such array
exists.

Now we consider the case a; = ay = a3 = a4 = 0. Assume that k¥ > 61. Also consider
the intersection matrix

[0 k 0 0 0 0 |

1 0 k-1 0 0 0
I 0 ¢ 0 k — co 0 0

0 0 C3 0 k — c3 0

0 0 0 Cy 0 k—cy

[ 00 0 0 Cs k:—c5_

we have

k402 <tr(L?

< k2 + 6k + ¢ + 2¢4(2k — cs5)
< k* + 6k + 4csk — ¢

This implies that c5 > 0.1403k. As

Oumin (Vi — (1 + c2)k + o) |
k(k—1)(k—2)
> 0.4904,

Jus| = |

In this situation, we may assume that ¢, = ak and ¢5 = k. Then by Equation 2.2, we

have
wy Omintz — Cqls
= 2E
If—C4
4
g\u3|—04
I BsY

12
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Therefore,
ks + ki + ks
m _—
- k?gu% —I— k4ui
k k—c
L+ (1472
uj + Euj
1+ 21+ 152)

4 _
w2+ i(ﬁ%@)z

Then use the fact 0 < o < fand 0.1403 < B < 1, we get m < 61. By [2, Proposition
3.3], we get k£ < 61, contradiction.

It follows that £ < 60. Then we check all feasible intersection arrays with a; = ay =
a3 = a4 = 0,c9 = 1or2,and O, < —%k‘, the folded 11-cube and the odd graph Og
are the only possible ones.

This completes the proof. ]

Now Theorem 1.0.1 follows from Proposition 3.2.1, Proposition 3.2.2 and Proposition
3.3.1.

13
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